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Abstract— Performing acrobatic maneuvers involving long
aerial phases, such as precise dives or multiple backflips from
significant heights, remains an open challenge in legged robot
autonomy. Such aggressive motions often require accurate state
predictions over long horizons with multiple contacts and
extended flight phases. Most existing trajectory optimization
(TO) methods rely on Euler or Runge-Kutta integration,
which can accumulate significant prediction errors over long
planning horizons. In this work, we propose a novel whole-body
TO method using variational integration (VI) and full-body
nonlinear dynamics for long-flight aggressive maneuvers. Com-
pared to traditional Euler-based TO, our approach using VI
preserves energy and momentum properties of the continuous-
time system and reduces error between predicted and executed
trajectories by factors of between 2 − 10 while achieving
similar planning time. We successfully demonstrate long-flight
triple backflips on a quadruped A1 robot model and backflips
on a bipedal HECTOR robot model for various heights and
distances, achieving landing angle errors of only a few degrees.
In contrast, TO with Euler integration fails to achieve accurate
landings in equivalent circumstances, e.g., with landing angle
errors greater than 90◦ for triple backflips. We provide
an open-source implementation of our VI-discretized TO to
support further research on accurate dynamic maneuvers
for multi-rigid-body robot systems with contact: https://
github.com/DRCL-USC/VI_discretized_TO

I. INTRODUCTION

Acrobatic maneuvers on legged robots have drawn sig-
nificant interest due to their notable advantages in travers-
ing difficult terrain, wide gaps, and complex obstacles.
These maneuvers have been successfully demonstrated using
learning-based control [1]–[9], model-based control [10]–
[16], trajectory optimization [17]–[23], and mixed-integer
convex programming [24]. However, due to the under-
actuated flight phase (during which control has little ef-
fect on robot motion), achieving precise landing in such
motions is still a particular challenge, requiring accurate
whole-body coordination across various contact and mid-
air phases. While stable landing is a multi-faceted problem
and many tools such as dedicated landing controllers [25]–
[28], specialized hardware [29], [30], and real-time updates
to pre-impact body and joint position [31]–[34] contribute
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Fig. 1: Triple backflips on A1 quadruped robot: Comparison between
Euler-based TO (left) and our VI-discretized TO (right). The numbers in the
figures indicates how many successful backflips are achieved. Supplemental
video: https://youtu.be/z4HzWtGu9RM

to success, one of the most critical factors is reduction
of tracking errors in the body angles and rates. Increasing
flight phase duration or aggressiveness of the aerial motion
(e.g., multiple backflips) compounds this challenge, as state
prediction errors accumulate quickly, causing the terminal
state at landing to be highly sensitive to the state at takeoff.

Trajectory optimization (TO) is increasingly used for acro-
batic maneuvers due to its capability to optimize over multi-
ple contact phases with nonlinear constraints [11], [17], [21],
[26], [35]–[38]. For many classes of robot systems, reduced-
order models such as spring-loaded inverted pendulum [39],
single-rigid-body dynamics (SRBD) [21], [37], [38], or
centroidal dynamics with kinematic constraints [40], [41]
yield good results for maneuvers with short flight phases.
However, a full-body nonlinear dynamics model is critical
to successful long-flight motions [20], [22]. Moreover, com-
mon TO methods discretize the dynamics using first-order
Euler integration for simplicity and computational efficiency.
However, as Euler integration does not preserve system mo-
mentum or energy [42], it generates trajectories that violate
these conservation laws and accumulate large discretization
errors. Higher-order explicit Runge-Kutta schemes [43] can
mitigate this error but suffer from potentially impractical
solve time when used as a dynamics constraint in TO [44],
and still inherently introduce artificial energy dissipation [45]
arising from a non-physics informed discretization. In our
prior work on bipedal [26] and quadruped jumping [20], we
observed that energy drift from dynamics discretization can
cause large landing angle errors in long and high jumps.

To address the challenges of accuracy in acrobatic motion
planning with long aerial phases, we develop a transcription
method that directly discretizes the underlying variational



mechanics of the robot system. Such variational integration
(VI) has long been used to improve simulation fidelity of
physical systems, leveraging its symplectic form and con-
servation of physical quantities [46]. VI-based discretization
preserves system momentum and, while fixed time step VI
does not expressly enforce energy conservation [47], it elim-
inates the secular energy drift obseved in other integration
schemes. This bounded-energy behavior of fixed-time VI
enables various acrobatic motions where Euler integration
fails. Because these conservation properties are intrinsic to
the discretization and hold regardless of time step size,
we can achieve a transcription that aligns more closely to
the proper mechanics without adding collocation points and
incurring commensurate compute time penalties.

In recent years, VI has been used in motion planning [42],
[44], [48]–[51], though most applications focus on motions
with no or limited flight time, and little acrobatic motion
of the robot trunk (walking, horizontal jumping, etc.). Some
recent work has approached highly dynamic motion using
geometric integration similar to VI, but utilizes non-linear
model predictive control (MPC) [52], wherein the planning
horizon spans a fraction of the total target motion at a time.

In motions where the contact schedule keeps the robot
fully actuated (or under-actuated phases are brief), real-time
joint tracking controllers can introduce feedback torque to
compensate for discrepancies in feed-forward torques that
arise from discretization-induced energy drift during TO.
While VI-discretization can be beneficial in such cases—as
seen in [48]—we contend that the advantages that VI pro-
vides are far more impactful in long under-actuated phases,
where system coordinates cannot be directly corrected via
joint tracking and are therefore highly sensitive to whether
the discretized TO predictions for proper lift-off conditions
and in-flight joint trajectories align to the continuous system.
Compared to [48], we eschew the contact-implicit formula-
tion in lieu of a predetermined contact schedule to limit the
size of the optimization problem, allowing more computation
time for longer horizon optimization (important for long-
flight phase maneuvers) rather than for contact evaluation.
Planning with a given contact schedule is commonly used
in Euler-based TO to realize aggressive long-flight motions
[20], [22], [36], [53]. Our TO method, based on VI and
a predetermined contact schedule, allows us to keep solve
times low despite the complexity of the maneuvers.

The contributions of our work are summarized as follows.
• We develop a TO approach using fixed time step VI

for full-body nonlinear robot dynamics, leveraging the
conservation properties of VI in long horizon planning
to realize long-flight aggressive maneuvers.

• We validate our approach extensively with various
aggressive maneuvers such as multiple backflips on
quadruped and bipedal robots with significant height
and jump distances. Compared to TO using Euler inte-
gration, our VI-based method requires similar solving
time, but can remarkably reduce the error between
predicted and executed trajectories by factors of 2−10,
achieving landing angle errors of only a few degrees.

II. PRELIMINARIES

We begin with a review of Lagrangian mechanics and
the formulation of a family of variational integrators that
discretize the variational principle of least action.

Consider a system with configuration q ∈ Q, where Q
is the configuration manifold, and velocity q̇ ∈ TqQ, where
TqQ is the tangent space to Q at q. Let TQ = {(q, q̇)|q ∈
Q, q̇ ∈ TqQ} denote the tangent bundle of Q. Let p ∈ T ∗

qQ
denote the generalized momentum of the system, where T ∗

qQ
is the cotangent manifold of Q, and T ∗Q = {(q,p)|q ∈
Q,p ∈ T ∗

qQ} is the cotangent bundle of Q.
Lagrangian mechanics describes the system dynamics us-

ing a smooth function L : TQ → R, called the Lagrangian,
and a Lagrangian force fL : TQ × U → T ∗Q acting on
the system with control parameter u ∈ U , which may in
general include control torques, contact forces, damping, etc.
In this formulation, the generalized momentum is related to
the configuration variables and velocity as p = ∂L

∂q̇ (q, q̇).
The trajectories of a Lagrangian system satisfy the

Lagrange-d’Alembert Principle [54, Ch. 8]:

δ

∫ T

0

L(q, q̇)dt+
∫ T

0

fL(q, q̇,u) δqdt = 0, (1)

where the variation is induced by an infinitesimal variation
δq(t) that vanishes at the endpoints t = 0 and t = T .
Integration by parts applied to (1) leads to the forced
Euler–Lagrange (EL) equations of motion:

∂L(q, q̇)
∂q

− d

dt

(
∂L(q, q̇)
∂q̇

)
+ fL(q, q̇,u) = 0. (2)

For many systems, a standard choice of the Lagrangian is
L(q, q̇) = K(q, q̇)−V(q), where K(q, q̇) = 1

2 q̇
⊤M(q)q̇ is

the kinetic energy with generalized mass matrix M(q) and
V(q) is the potential energy. In this case, the EL equations
take the familiar form [55, Ch. 8]:

M(q)q̈ +C(q, q̇) = fL(q, q̇,u), (3)

where C(q, q̇) are Coriolis and other conservative forces.
Traditional integration methods discretize the equations

of motion in (3) directly. However, this usually does not
preserve conservation laws captured by the continuous-
time EL equations. In contrast, a variational integrator [46]
discretizes the Lagrange-d’Alembert Principle by replacing
the integrals in (1) with finite sums. Dividing the interval
[0, T ) into N subintervals [tk, tk+1) for k ∈ {0, 1, ..., N−1},
such that 0 = t0 < t1 < · · · < tN = T , we obtain:

δ

N−1∑
k=0

Ld(qk, qk+1)

+

N−1∑
k=0

fd(qk, qk+1,uk,uk+1) δq = 0, (4)

where qk = q(tk), uk = u(tk) and Ld and fd are,
respectively, the discrete Lagrangian and discrete generalized
force, approximating the contribution to the integral over
∆tk = tk+1 − tk. While many choices are possible for the



discretization of L, and fL, one popular choice—and the
one employed in this work—is midpoint quadrature. Using
q
k
= qk+1+qk

2 , q̇
k
= qk+1−qk

∆tk
, this yields:

Ld(qk, qk+1) ≈ ∆tkL
(
q
k
, q̇

k

)
, (5)

fd(qk, qk+1,uk,uk+1) δq ≈ f−
d,k δqk + f+

d,k δqk+1, (6)

with “left” and “right” discrete forces, respectively, f−
d,k =

∆tk
2 fL(qk, q̇k,uk), f+

d,k = ∆tk
2 fL(qk+1, q̇k,uk+1). Now,

carrying through using the chain rule in (4):

N−1∑
k=0

(D1Ld(qk, qk+1) δqk +D2Ld(qk, qk+1) δqk+1)

+

N−1∑
k=0

(
f−
d,k δqk + f+

d,k δqk+1

)
= 0, (7)

where D1Ld and D2Ld denote the slot derivatives:

D1Ld(qk, qk+1) =
d

dqk
Ld(qk, qk+1)

=
(∆tk

2

∂L
∂q

− ∂L
∂q̇

)∣∣∣∣
q
k
, q̇

k

, (8)

D2Ld(qk, qk+1) =
d

dqk+1
Ld(qk, qk+1)

=
(∆tk

2

∂L
∂q

+
∂L
∂q̇

)∣∣∣∣
q
k
, q̇

k

. (9)

Noting that variations δqk must vanish at the endpoints, i.e.,
δq0 = δqN = 0, and grouping the remaining terms (k ∈
{1, N − 1}) by the index of δqk, (7) reduces to:

N−1∑
k=1

(
D2Ld(qk−1, qk) +D1Ld(qk, qk+1)

+f+
d,k−1 + f−

d,k

)
δqk = 0. (10)

Since this must hold for all δqk, we conclude that:

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
d,k−1 + f−

d,k = 0

(11)

for each term of the summation. Eq. (11) are known as the
Discrete Euler Lagrange (DEL) equations. If qk−1 and qk
are known, then these equations can be used to propagate
the state to qk+1. Via discrete Legendre transformation [46],
the discrete momentum pk of the system is defined as:

pk = D2Ld(qk−1, qk) + f+
d,k−1. (12)

III. VI-DISCRETIZED TRAJECTORY OPTIMIZATION

In this section, we develop a TO approach using fixed time
step VI for full-body nonlinear robot dynamics. The goal is
to find a discretized sequence of reference states and controls
that achieves the maneuvers under constraints such as robot
dynamics, initial and final conditions, a predefined contact
schedule, collision avoidance, friction cone, force saturation,
and hardware limits. The proposed approach encodes VI for
full-body non-linear dynamics constraints and is transcribed
as multiple shooting with a predefined contact schedule.

A. Problem Statement

Inconveniently, the multi-rigid-body system dynamics de-
scribed by the DEL equations in (11) require knowledge of
both qk−1 and qk to calculate qk+1. Instead, we define the
robot state as xk = (qk,pk) ∈ T ∗Q with the generalized
coordinate qk, momentum pk, and control input uk. We
derive the robot dynamics in the form of d

(
xk,uk,xk+1) =

0 in Sec. III-B, allowing us to propagate the state xk+1

solely from the current state xk and control uk. The control
input uk represents both the contact forces and joint torques
being applied on the system.

Given an initial condition x0 ∈ T ∗Q, the goal of
trajectory optimization is to find a state-control trajectory
(x0:N ,u0:N−1) for the robot system, that minimizes:

min
x0:N ,u0:N−1

J
(
xN

)
+

N−1∑
k=0

w
(
xk,uk

)
(13a)

s.t. d
(
xk,uk,xk+1) = 0, (13b)

ϕ
(
xk,uk

)
= 0, ψ

(
xk,uk

)
≤ 0, (13c)

ϕN
(
xN

)
= 0, ψN

(
xN

)
≤ 0, k = 1 . . . N − 1, (13d)

where the functions w(xk,uk) and J(xN ) specify the stage
cost and terminal cost, respectively, of the trajectory. The
function ϕ captures equality constraints on the initial and
final states, and a predefined contact schedule. The function
ψ captures inequality constraints related to hardware lim-
its, friction cones, and collision avoidance constraints. The
functions ϕ and ψ are described in details in Sec. III-C.

B. Full-body Dynamics using VI

Traditional Euler or Runge-Kutta integration in TO tran-
scription relies directly on (3), enforcing the relation between
the position-velocity pair (qk, q̇k) at tk and the corre-
sponding pair (qk+1, q̇k+1) at tk+1. Eq. (11), rather, relates
generalized coordinates at tk−1 and tk, (qk−1, qk) to those at
tk+1, qk+1. Defining VI in position-momentum form makes
the two approaches analogous, i.e., forward propagation
using only information available at tk, as follows:

pk+1 = D2Ld(qk, qk+1) + f+
d,k, (14a)

pk = −D1Ld(qk, qk+1)− f−
d,k, (14b)

where Eq. (14b) is derived from (11) and (12).
We define u = (τ ,f c), where τ denotes the applied joint

torques between the rigid bodies, and fc = [f
(1)
c , ...,f

(n)
c ]

denotes ground reaction forces (GRF) between the rigid
bodies and the terrain for n contact points. Then, the discrete
forces f±

d,k in (14a) and (14b) are approximated by (6), with
a continuous force:

fL(q, q̇,u) = τ −Kj
fricq̇ + J(q)Tf c, (15)

where Kj
fric is a vector of damping coefficients for each

coordinate, modelling friction torques, and J(q) is the
concatenated Jacobian for each of the contact points. For
floating-base systems (e.g. legged robots), we define q =
(qb, qJ), with body coordinate qb and joint angles qJ .



Eq. (14), evaluated using (6), (8), (9) and midpoint quadra-
ture, defines VI as an implicit relation between the current
state xk = (qk,pk), control input uk and the subsequent
state xk+1 = (qk+1,pk+1). This is encoded as the dynamics
constraints in Eq. (13b) of the TO problem (13).

C. Trajectory Optimization

The complete trajectory optimization problem is formu-
lated as a NLP of the following form:

min
x0:N ,u0:N−1

ϵNeTNeN +

N−1∑
k=1

ϵqe
T
k ek + ϵττ

T
k τk (16a)

s.t. Full-body dynamics constraints (14a), (14b), (16b)

Initial condition: (q,p)
∣∣
k=0

= (qd
0 ,p

d
0), (16c)

Final condition: (q,p)
∣∣
k=N

= (qd
N ,p

d
N ), (16d)

Joint angle: qJ,min ≤ qJ,k ≤ qJ,max, (16e)

Joint velocity:
∣∣∣∣qJ,k+1 − qJ,k

∆tk

∣∣∣∣ ≤ q̇J,max, (16f)

GRF: f (i),z
c,min · δ(i)c,k ≤ f

(i),z
c,k ≤ f (i),z

c,max · δ(i)c,k, (16g)

Friction: |f (i),x
c,k /f

(i),z
c,k | ≤ µ, (16h)

Foot Stationarity: |r(i)f (qk)− r
(i)
f (qd

0)|·δ
(i)
c,k = 0, (16i)

Collision avoidance constraints: g(qk) ≤ 0, (16j)
Motor dynamics and torque constraints:∣∣V (τk, q̇J,k)

∣∣ = ∣∣ρτk + σq̇k
∣∣ ≤ Vmax, (16k)

|τk| ≤ τmax, (16l)

where τk is joint torque over time interval [tk, tk+1],
(qd

0 ,p
d
0) and (qd

N ,p
d
N ) are the desired initial and final states,

r
(i)
f (q) is the location of the ith contact point, µ is the

friction coefficient, and ϵq, ϵτ , ϵN are cost function weights.
A standing pose for the robot is defined via a nominal joint
configuration qnom

J,k , and the error terms ek = qJ,k − qnom
J,k

are added to the stage cost to prevent the joint angles from
varying arbitrarily during jumping motions. The error eN
denotes this joint angle deviation at k = N . The trajectory
qnom
J,k is also used as an initial guess for the NLP solver.
The contact force at contact point i in x and z directions

are denoted as f (i),x
c,k ,f

(i),z
c,k , satisfying the friction constraint

(16h). The contact schedule for the ith contact point, δ(i)c,k,
is defined a priori as a mapping from time step k to
{0, 1}—mapping to 1 if the point has scheduled contact
with the terrain, and to 0 otherwise.1 Eq. (16i) enforces that
any contact point in ground contact should not move from
its initial position during that contact—once it leaves the
ground, δ(i)c,k is zero and this constraint is satisfied regardless
of r

(i)
f . Collision avoidance constraints (16j) are designed

to prevent collision between robot links and to guarantee all
robot components have clearance to obstacles.

1Often δ
(i)
c,k may be represented by M phase durations {θ1, ..., θM},

where each θ represents a duration during which δ
(i)
c,k is constant, with

shifts in contact only happening between phases.

To accomplish aggressive maneuvers, the joint torque and
velocity often rapidly reach motor limits and onboard power
supply. Thus, we include the motor dynamics constraints
(MDC) in TO to represent true system limits (16k). The
MDC represents inherent torque-velocity relationships, ex-
pressed by the estimated voltage on motors V , with voltage
supply Vmax. In (16k), we have ρ = ri/(Kτgr), σ = Kvgr,
where ri is the resistance of the motor windings, gr is gear
ratio, Kv and Kτ are motor velocity and torque constants.

IV. EVALUATION

This section evaluates the effectiveness of our VI TO
approach on various robot platforms: 1) a double compound
pendulum (Sec. IV-A), validating and illustrating the benefits
of VI prediction accuracy and conservation properties; 2)
a Unitree A1 quadruped [56] performing triple backflips
(Sec. IV-B); and 3) a HECTOR bipedal robot [57] perform-
ing backflips (Sec. IV-B). Examples with other systems are
provided in our repository2. A video of the experiments is
included in the supplementary material.

We utilize MATLAB-Simulink-Simscape to build simula-
tion platforms and derive the full-body non-linear dynamics
models for both Euler integration and VI. Our algorithm is
implemented in MATLAB R2023b, and the NLP is solved
using the CasADi toolbox [58] with the IPOPT solver. In
all experiments, initial guesses provided to the NLP solver
were consistent between Euler and VI trials.

A. Motivating Example: Double Pendulum

While most real multi-rigid-body robots have complex
full-body dynamics, we first consider an intuitive system to
validate the advantages in energy and prediction behaviors of
VI over Euler integration. We consider a double pendulum
with m1 = m2 = 1 kg, L1 = L2 = 1 m, I1 = I2 = 1

12
kg·m2 (Fig. 2). TO was performed using both Euler and VI
methods to swing the pendulum from the fully downward
position to fully upward, with ∆tk = 10 ms, T = 2.5 s.

The control trajectories provided by TO were used as
feed-forward torques in a finely discretized simulation
(∆tk, sim ≪ ∆tk). The effectiveness of these torques alone
in achieving the motion indicates how well the transcription
captures the true dynamics. Fig. 2 shows that, despite some
residual error, the VI-discretized TO closely tracks the
desired trajectory and flips the pendulum, while the Euler-
discretized TO fails to reach the target state.

The accurate tracking performance of our VI-discretized
TO, observed in Fig. 2, is attributed to VI’s accurate long-
term state predictions, enabled by preserving the system
energy. We examine the free-response energy behavior (τj =
0) of the system under Euler integration and VI. With
only gravity acting on the system, the total energy in VI
is conserved as expected, while Euler integration rapidly
diverges from the initial energy, deviating by 3.1 J (28%
of initial energy) after 2.5s (Fig. 3).

This excess energy disrupts the behavior of the pendulum
system, causing the discrepancy between the reference and

2https://github.com/DRCL-USC/VI_discretized_TO
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Fig. 2: Double pendulum swing-up: Comparison between feed-forward
simulations of double pendulum swing-up using Euler-based TO (left) and
VI TO (right). Expected TO reference trajectories shown as dotted line.
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Fig. 3: Double pendulum energy: Deviation of system energy for free
response of double pendulum for Euler method and VI.

simulated trajectories in Fig. 2. Intuitively, the Euler-based
TO expects more energy in the system than the actual
amount added by the applied torques. Thus, the required
torque to achieve a task is under-estimated, leading to
failures. In contrast, the VI approach deviates from the initial
energy by only 0.014 J (0.12%) over the planning time T =
2.5s, tracking the expected trajectory more successfully.
In the next section, we illustrate that similar trends and
behaviors are observed in Euler-TO generated trajectories
for bipedal and quadruped robots, even when joint tracking
controllers are used in addition to feed-forward torques.

B. Maneuvers on Legged Robots

In this section, we demonstrate single and multiple back-
flip tasks on simulated bipedal HECTOR and quadrupedal
Unitree A1 robots, with different jump heights and distances,
summarized in Tab. I. For each task, five pairs of target jump
distance and platform height were randomly generated. For
HECTOR, contact timings denote {heel-toe contact, flight
phase}, and, for A1, contact timings denote {all-foot contact,
rear-foot contact, flight phase}.

We used a joint PD controller to track reference joint
trajectories obtained from TO (16). Given the feedback joint
trajectory {qJ,k, q̇J,k}, desired joint angle qd

J,k, velocity
q̇d
J,k ≜

∣∣(qd
J,k+1−qd

J,k)/∆tk
∣∣, and feed-forward joint torque

τ d
J,k, the controller executes a total torque command as:

τ cmd
J,k = τ d

J,k +Kp(q
d
J,k − qJ,k) +Kd(q̇

d
J,k − q̇J,k). (17)

1) Accuracy of Trajectory Prediction: The resulting robot
trunk center of mass position, trunk angle, and foot position

1

2

1

Fig. 4: Bipedal backflips on HECTOR: With our approach, the robot
performs a backflip on flat ground (left) and double backflips from 1 m
platform, with landing angle errors of several degrees, ∆tk = 5 ms.
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Fig. 5: Bipedal landing target tracking: Simulated and reference XY
trajectories of toe contact point for HECTOR backflip, showing superior
tracking for VI transcription.

(toe location for bipedal robot, front foot for quadruped)
at landing were recorded and compared to those predicted
by the reference trajectory. The error between predicted and
simulated values serves as a metric of how well the robot was
able to execute the output trajectory. For each combination
of maneuver and discretization, these errors were used to
generate a set of root mean square error (RSME) values.

Representative results comparing Euler- and VI-
discretized TO in the quadruped triple backflip task are
shown in Fig. 1. Results for a single backflip from flat
ground and a double backflip from an elevated platform,
both using VI-discretized TO, are shown in Fig. 4. Fig. 5
shows a representative comparison of how the foot position
of the robot tracks a corresponding reference trajectory.

We observe that the terminal error in the trunk centroid
location, foot position, and—most critically for successful
landing—trunk angle are reduced for all three maneuvers
when using VI in place of Euler integration. For ∆tk = 10
ms, terminal trunk angle errors are reduced from 60◦ to
23◦ for the single backflip, from 45◦ to 21◦ for the double
backflip, and from 98◦ (a head-on collision with the ground)
to 12◦ for the quadruped triple backflip. Note that for the
bipedal single and double backflip, refining ∆tk to 5 ms
results in terminal trunk angle RMSE of < 5◦ and < 1◦,
respectively, with VI, while remaining at > 20◦ error when
using Euler integration with the refined ∆tk.

Fig. 6 evaluates the solving time and RMSE as a function
of the number of knot points N for different integrators.
Overall, increasing N (i.e., smaller ∆tk) reduces the RMSE
but increases the solving time TIPOPT . Notably, we observe



TABLE I: Comparison of Euler and VI schemes for various biped and quadruped backflip tasks. Five trajectories with different heights
and distances for each task were evaluated, and terminal errors in trunk coordinates, foot position, and solve time were recorded.

System
Task

Platform Height
(m)

Jump Length
(m)

Contact timings
(ms) Integrators Trunk Errors

{ex, ey , eθ}
Foot Error

(cm)
IPOPT solve

time (s)
Avg. comp. time

per iter. (ms)

Biped (HECTOR) 0 0.0 - 0.5 {650 , 750} Euler 0.7, 11, 60 45 5.81± 1.23 18.8
Single Backflip VI 0.7, 5.8, 23 20 1.71± 0.21 25.9

Biped (HECTOR) 1.25 - 2.0 0.5 - 1.0 {750 , 900} Euler 5.1, 20, 45 31 3.38± 0.45 21.7
Double Backflip VI 0.6, 4.6, 21 20 2.85± 0.53 31.6

Quadruped (A1) 2 - 2.5 1 - 1.5 {500 , 300 , 900} Euler 20.6, 10.3, 98 18.3 4.51± 0.42 24.1
Triple Backflip VI 9.7, 3.1, 12.3 9.4 5.05± 0.63 31.5

TABLE II: Motor and on-board battery parameters of quadruped
A1 and HECTOR bipedal robot

Parameter Value Units
(A1) Max Joint Torque Thigh & Calf 33.5, 33.5 Nm

(HECTOR) Max Joint Torque Thigh & Ankle 33.5, 33.5 Nm

(HECTOR) Max Joint Torque Calf 51 Nm

Max Joint Speed 21 Rad/s

Max Battery Voltage 21.5 V
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Fig. 6: Comparison: Solving time and RMSE with varying numbers of knot
points for different integrators, observed from quadruped triple backflips.
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Fig. 7: Voltage and torque estimated from the A1 robot’s motors for triple
backflips. Dotted red lines denote voltage and torque limits. The notation
FT, FC, RT, RC represents front thigh, front calf, rear thigh, rear calf.

that our VI-discretized method can achieve a similar solving
time to Euler, while significantly reducing RMSE by 2-3
times in position and 5-10 times in orientation.

To validate that the execution of these trajectories obey
hardware constraints (16k), (16l) with values given in Table
II, the estimated motor voltage and actual torque during the
quadruped triple backflips were plotted in Fig. 7.

2) Optimization Solve Time: The solve time of the TO
was recorded for each trial, with averages reported in Table
I. Both the time reported by IPOPT at solve termination and
the average time per IPOPT iteration are listed.

Intuitively, we would expect increased computation time
for VI vs. Euler discretized TO due to the midpoint VI
being a second-order implicit integrator. However, while we
do observe non-trivial increases in the time to transcribe

constraints into the NLP and moderate increases in average
compute time per iteration, the average time reported by
IPOPT to solve the NLP was found to be similar to or lower
for VI than Euler for both robots (Tab. I, Fig. 6). While
we expected VI properties to mitigate solve time increases
resulting from the higher order scheme, this reduction in
optimization time was surprising and warrants discussion.

It is challenging to isolate the effect of any single factor
on compute time of an NLP solver, but we suggest that
the VI’s properties—adherence to physical conservation laws
and second-order accuracy—contribute to tractability. These
properties may lead to gradients that more effectively move
non-feasible guesses to feasible trajectories or maintain
feasibility while minimizing the cost function, reducing the
number of required iterations and offseting the increased
time per iteration. With VI, it is perhaps less likely than
with Euler methods to get “stuck” in non-feasible regimes
due to accumulated energy or discretization errors. For tasks
sensitive to the energy drift of Euler integration, these factors
might reduce NLP solver time despite increased complexity.

C. Open-Source Code

The implementation used to generate the results in this
work, along with results for several other physical systems, is
provided as an open-source project on GitHub: https://
github.com/DRCL-USC/VI_discretized_TO. We
provide tutorials on running the examples and creating new
systems to support the research community in exploring the
practical benefits of VI-discretized TO.

V. CONCLUSIONS

This work showed that performing transcription in tra-
jectory optimization for multi-rigid-body robots using varia-
tional integration enables accurate trajectory prediction over
long planning horizons by preserving the momentum and
energy of the continuous-time system. Extensive evaluations
on quadruped and biped robot models showed that the ability
to performs long-horizon optimization efficiently enables
aggressive maneuvers with long flight periods. Future work
includes implementation of these trajectories on hardware,
extension of the TO horizon to include the landing phase,
and assessing the benefits of VI-discretization when paired
with MPC — including developing a VI-powered nonlinear
MPC controller. Comparisons between VI discretization in
TO with other non-Euler integrators such as the Leapfrog
integrator or Runge-Kutta methods are also planned.
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