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Abstract—Dense differentiable environment representations
are critical for navigation and exploration by aerial robots. In this
work, we explore a novel implicit scene representation, the Signed
Directional Distance Function (SDDF), to enhance geometry mod-
eling and differentiable trajectory optimization. Unlike signed
distance function (SDF) and similar to neural radiance fields
(NeRF), SDDF has a position and viewing direction as input. Like
SDF and unlike NeRF, SDDF directly provides distance to the
observed surface along the viewing direction, allowing efficient
view synthesis without iterative ray marching. To learn and
predict scene-level SDDF efficiently, we develop a differentiable
hybrid representation that combines explicit ellipsoid priors and
implicit neural residuals. This approach allows the model to
effectively handle large distance discontinuities around obstacle
boundaries while preserving the ability for dense high-fidelity
prediction. We show that SDDF is competitive with the state-of-
the-art neural implicit scene models in terms of reconstruction
accuracy and rendering efficiency, while allowing differentiable
view prediction for robot trajectory optimization.

I. INTRODUCTION

Aerial robots are increasingly deployed in a priori unknown
and unstructured environments. Successful operations require
efficient representation and prediction of environment geome-
try from sensor observations to support collision checking for
safe navigation, occlusion prediction for autonomous explo-
ration, or grasp pose generation for aerial manipulation. While
conventional explicit representations such as meshes, point
clouds, and voxels are well established, they are not continuous
and does not support differentiation, a key requirement for nav-
igation and trajectory optimization. Recent work has focused
on implicit and differentiable scene representations that use
neural fields to model occupancy [1], signed distance function
(SDF) [2], and radiance field [3]. Although these implicit
methods offer superior fidelity, they require multiple network
forward passes, complicated calculations per pixel/ray, and
high memory usage, posing significant challenges for deploy-
ment onboard resource-constrained aerial robots.

To overcome these limitations, we propose and investigate
a novel implicit representation, called the Signed Directional
Distance Function (SDDF). The SDDF takes query position
and viewing direction as input and directly output the distance
to the observed surface along the viewing direction. By learn-
ing a geometry representation in the space of positions and
directions, SDDF support arbitrary view synthesis and efficient
occlusion queries in a feedforward manner, eliminating the
need for iterative sphere tracing required for SDF. Further,
SDDF can be trained purely from range observations such as
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Fig. 1: (a), (c): Scene-level signed directional distance function (SDDF). (a), (b), (d):
Our method uses ellipsoids as an initial coarse approximation of the shapes of objects in
the environment. (e), (f): The ellipsoid prior is refined by a latent feature network and a
shared decoder to predict the surface reconstruction residual.

depth images and LiDAR scans, unlike NeRF [3] and Gaussian
Splatting (GS) [4] that require photometric supervision.

However, learning SDDF is challenging due to the incorpo-
ration of direction in the input space and discontinuities caused
by occlusions. For these reasons, previous methods that study
similar formulations [5, 6] are limited to single object shape
modeling. In contrast, we develop a scene-level SDDF repre-
sentation that is better suited for aerial autonomy. To this end,
we design a hybrid explicit-implicit model that combines an
ellipsoid-based prior and an implicit neural residual network
to approximate the SDDF in a differentiable way (Fig. 1). Our
experiments show that our method is competitive with state-
of-the-art SDF, GS, and NeRF in reconstruction performance
while supporting efficient differentiable view optimization.

II. LEARNING SCENE-LEVEL SDDF

To enable efficient view optimization for UAVs equipped
with range sensors (LiDARs or depth cameras), we need
to learn an environment model that is capable of efficient
and differentiable synthesis of arbitrary distance views. Let
the occupied space in the environment be represented by a
set O ⊂ R3. Consider a set of measurements {Tt,Zt}Tt=1,
where Tt ∈ SE(3) is the sensor pose at time t and
Zt = {vi, rt,i}Ni=1 are the N viewing directions vi ∈ S2 and
corresponding range measurements rt,i ∈ R>0. Our objective
is to learn a representation of the occupied space O in the
form of a signed directional distance function.

Definition 1. The signed directional distance function (SDDF)
of a set O ⊂ Rn is a function f : Rn × Sn−1 → R ∪ {±∞}
that measures the signed distance from a point p ∈ Rn to the
set boundary ∂O along a direction v ∈ Sn−1, defined as:

f(p,v;O) :=

{
min{d > 0 | p+ dv ∈ ∂O}, p ̸∈ O,

max{d ≤ 0 | p+ dv ∈ ∂O}, p ∈ O.
(1)



Fig. 2: Method overview. Blue arrows show the data flow in the forward pass, and red
arrows represent the backward pass.

Intuitively, the SDDF can be understood as a directional
formulation of the SDF. It is well known [7, 8] that SDFs
satisfy an Eikonal equation ∥∇pfSDF(p;O)∥2 = 1, which is
useful for regularizing or designing the structure of models
for estimating SDF. Similarly, SDDF satisfies a directional
Eikonal equation v⊤∇pf(p,v;O) = −1, a property that we
will encode in the design of our network architecture.

As shown in Fig. 2, our model combines both explicit
and implicit representations. First, an explicit ellipsoid-based
Prior network P (p,v) is introduced to predict a coarse
SDDF prior f(p,v). Then, a residual network consisting of
a Latent feature network L and a Residual decoder R are
used to predict an SDDF correction δf (p,v), so that the
combination accurately models the true SDDF f∗(p,v) as
f̂(p,v) = f(p,v) + δf (p,v).

A. Ellipsoid-based Prior Network

To take advantage of an explicit representation for occlusion
modeling, we design an ellipsoid-based prior network P ,
which uses a set of ellipsoids to approximate the structure
of the environment based on range measurements and leaves
the task of learning fine details to the residual network R.

First, for simplicity, consider a single ellipsoid given by
E = {y ∈ R3 | (y − c)⊤RQ−2

0 R⊤(y − c) ≤ 1}, where
c ∈ R3 and R ∈ SO(3) are the position and orientation,
Q0 = diag (r), and r ∈ R3

+ are the radii of the ellipsoid.
Then, the SDDF prior of a single ellipsoid E is defined as

f(p,v; E) =

{
−detQ0

√
β+p′⊤Q2

1v
′

v′⊤Q2
1v

′ , v(p,v) ≥ 0,

∞, v(p,v) < 0,
(2)

where β = max(i(p,v), 0) + ϵ, ϵ > 0 is a small value
introduced for the numerical stability. i(p,v) = v′⊤Q2

1v
′ −

w′⊤Q2
0w

′ is the intersection indicator that i(p,v) ≥ 0
when the ray intersects the ellipsoid. Q1 = det(Q0)Q

−1
0 ,

p′ = R⊤ (p− c), v′ = R⊤v, and w′ = p′×v′. The validity
indicator function is defined as:

v(p,v) = −detQ0

√
β + p′⊤Q2

1v
′

v′⊤Q2
1v

′
s(p,v), (3)

where s(p,v) = p′⊤Q2
1p

′ − detQ2
0 is the sign indicator.

When p is outside of the ellipsoid, s(p,v) > 0. Fig. 3 shows
the ellipsoid SDDF prior f(p,v; E) for a 2D example.

To model scenes with multiple objects at different locations,
we consider a set of M ellipsoids Ej for 1 ≤ j ≤ M . The
SDDF of a union of ellipsoids is the minimum of the individual
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Fig. 3: 2D visualization of the single ellipsoid SDDF f(p,v; E) in (2) for fixed v and
varying p.

ellipsoid SDDFs but with the intersected ellipsoids prioritized:

f(p,v;∪jEj) =

 min
j:ij(p,v)≥0

fj(p,v), ∃ij(p,v) ≥ 0,

minj fj(p,v), otherwise.
(4)

Thus, given M ellipsoids with pose and radii Rj , cj , rj for
1 ≤ j ≤ M , we define our overall ellipsoid-based prior as:

(i, s, f, jf ) = P
(
p,v

∣∣ {Rj , cj , rj}Mj=1

)
, (5)

where i = maxj ij(p,v), s = minj sj(p,v), and jf is the
index of the ellipsoid selected by (4) to be used for subsequent
residual calculation. By construction, the ellipsoid-based prior
satisfies the Eikonal equation.

B. Residual Network
The network P provides a coarse geometric prior but does

not yield accurate predictions. We design a residual network to
predict a correction term δf (p,v) so that the SDDF prediction
of our combined prior and residual, f̂(p,v) = f(p,v) +
δf (p,v), is accurate.

First, given the intersected ellipsoid Ejf selected by (5), we
obtain the intersection point q in the ellipsoid frame: q =
R⊤

jf
(p+fv−cjf ) = p′+fv′. Then, we train a latent feature

network z = L(q,v′, jf ) with the intersection point q, local
viewing direction v′, and ellipsoid index jf as input and a
latent feature z as output:

z = L
(
q,v′, jf

∣∣ {Wi}Mi=1

)
= Wjfm ∈ Rm, (6)

m = vec
(
E(q)E(v′)⊤

)
∈ R100, (7)

E(p) =
[
p2x, pxpy, pxpz, p

2
y, pypz, p

2
z, px, py, pz, 1

]⊤
, (8)

where E : R3 → R10 is a degree-2 monomial embedding,
vec(·) concatenates the columns of the input matrix, m is a
vector of degree-2 monomials, and Wi ∈ Rm×100.

The latent feature vector z ∈ Rm is then decoded by the
residual decoder, which is a multi-layer perceptron R : Rm →
R3, into three residual predictions (δi, δs, δf ). Then, the final
predictions of the SDDF value is:

f̂(p,v) = f(p,v) + δf (p,v), (9)

where α > 0 is a hyperparameter. In addition, we also get
the final prediction of the intersection indicator î(p,v) =
tanh (αi(p,v)) + δi(p,v) and the sign indicator ŝ(p,v) =
tanh (αs(p,v)) + δs(p,v).

And nicely, the joint prior-residual SDDF prediction f̂ in
(9) still satisfies the SDDF directional Eikonal equation by
construction, which is discussed in details in our extended
paper [9]. Because our SDDF model satisfies the Eikonal
equation by construction, we do not need an extra loss term
to regularize the network and can use fewer parameters in the
model, making it more efficient to train.



III. APPLICATION TO VIEWPOINT OPTIMIZATION

Our SDDF model is differentiable and, hence, enables
continuous viewpoint optimization, which can be used, for
example, to explore an unknown environment. For simplicity,
we first consider determining the next-best view and then scale
up to optimization of a trajectory of several views.

Our SDDF model can predict a point cloud measurement
from any desired sensor pose (pt,Rt) as:

Pt = {pt + f̂iRtvi}Ni=1, (10)

where {vi}Ni=1 are the ray directions in the sensor frame and
f̂i are the SDDF predictions for each ray. The utility of a
point-cloud measurement for the purpose of exploration or
environment coverage can be evaluated in terms of the visible
region volume. We use the following loss to measure the
(negative) size of the visible volume:

Lv

(
{f̂i}Ni=1

)
= − 1

2N

N∑
i=1

(
max{f̂i, 0}

)2

. (11)

Often, it is also desirable to design consecutive views Pt and
Pt+1 to have small overlap in order to observe a larger overall
area. We encode this using the following overlap loss:

Lo (Pt,Pt+1) = −
∑

p∈Pt,q∈Pt+1
min{∥p− q∥2 , dmax}

|Pt||Pt+1|
,

(12)
where dmax > 0 is a distance threshold of no overlap.

Additionally, we must also ensure that the sensor is not in
collision with any obstacles. To do so, we introduce a set
of risk detection rays, which are uniformly sampled from
the sphere that contains the robot, and obtain their SDDF
predictions {f̂r

i }Mi=1. The risk loss is defined as:

Lr

(
{f̂r

i }Mi=1

)
=

1

M

M∑
i=1

max {dsafe − f̂r
i , 0}, (13)

where dsafe > 0 is a safe distance threshold, chosen such that
f̂r
i < dsafe implies a potential collision.

We optimize the camera pose (pt+1,Rt+1) at time t + 1
by minimizing the weighted sum L = woLo +wvLv +wrLr,
where wo, wv , and wr are weights.

There are many ways to scale this method up to viewpoint
trajectory optimization. It is inefficient to optimize every pose
on the trajectory because two views that are close to each other
are very likely to overlap significantly, and the robot kinematic
constraints may not allow much adjustment for the viewpoint.
Therefore, we suggest optimizing certain waypoints on the
trajectory. We incrementally optimize n poses {pi,Ri}ni=0

generated by an off-the-shelf planning algorithm, such as
RRT* [10]. Specifically, we refine each pose {pi,Ri}i>0 by
optimizing the loss:

L′ = woLo

(
P0

j<i⋃
j=1

P ′
j ,Pi

)
+ wvLv + wrLr, (14)

where P ′
j is the predicted point cloud at optimized way-

point (p′
j ,R

′
j). During the optimization, we downsample

(a) Scene (b) SDDF (c) RaDe-GS (d) w/o RGB (e) Nerfacto (f) SDF [11]
Fig. 4: Qualitative comparison of SDDF predictions. Row 1: Replica Hotel (synthesized).
Row 2: Gibson Allensville (synthesized). Row 3: ScanNet scene 0000-00 (real). In areas
with limited sensor measurements, RaDe-GS [12] fails to learn the geometry, with RGB
(c) or without RGB (d), yielding artifacts. Nerfacto [13] in e) shows significant artifacts
and large distance prediction error. SDF-Instant-NGP [11] in f) tends to learn a smoother
approximation, missing sharp boundaries.

P0

⋃j<i
j=1 P ′

j with a stride of i − j, labeled as P̃j , such that
P̃j has a constant size. This incremental optimization strategy
provides two benefits. First, it reduces the use of GPU mem-
ory and makes the along-trajectory multi-view optimization
problem solvable. Second, it allows the robot to parallelize
the trajectory optimization and execution.

IV. EVALUATION

SDDF Reconstruction Experiments. We convert the sen-
sor poses and range measurements {Tt,Zt}Tt=1, Zt =
{vi, rt,i}Ni=1, described in Sec. II, into a dataset D =
{pj ,vj , f

∗
j , i

∗
j , s

∗
j}j suitable for training our SDDF model. A

total of 14 synthesized (LiDAR and depth camera) datasets are
used for comparison. We obtained data from six scenes from
Replica (“Hotel” and “Office 0-5”) [14] and the Allensville
scene from Gibson [15].

We compare our method against three baselines: Ner-
facto [13], RaDe-GS [12], and SDF-Instant-NGP [11]. These
methods were not initially designed for SDDF prediction
but can be used to predict SDDF as follows. For SDF, we
implement sphere tracing [16] to find the closest point on the
surface along the query direction. For Nerfacto and RaDe-GS,
we render a depth image at the query viewpoint, project the
depth image to a point cloud, and compute the distance.

Fig. 4 shows qualitative comparisons against RaDe-GS [12]
(RGB-D and depth-only), Nerfacto [13], and SDF-Instant-
NGP [11] with sphere tracing. In Fig. 4c, RaDe-GS exhibits
erroneous artifacts around the toilet, at the corner, or near
the fridge, where there are limited RGB-D observations.
Meanwhile, our method accurately reconstructs these areas.
Nerfacto also exhibits artifacts due to insufficient data as
shown in Fig. 4e. Since no explicit representations like our
ellipsoids or the Gaussians in RaDe-GS are used, Nerfacto
predicts SDDF based on the learned volume density, which
is optimized for photometric rendering rather than scene
geometry, leading to large distance prediction errors.

Meanwhile, sphere tracing on SDF-Instant-NGP [11] does
not exhibit significant artifacts. However, this baseline tends
to learn smoother shapes that lack sharper details, such as the
plant shown in the second row or the chairs in the third row
of Fig. 4f. Moreover, the first row of Fig. 4f shows that the
errors accumulated during sphere tracing become significant
at boundaries when the SDF model does not predict accurate



TABLE I: Mean absolute error (cm) of SDDF prediction

Allensville Hotel Office 0

LiDAR SDF-Instant-NGP [11] 1.137 1.224 0.825
SDDF (ours) 1.350 0.997 1.092

RGB-D RaDe-GS [12] 1.737 0.857 0.438
Nerfacto [13] 83.433 58.272 63.011

Depth RaDe-GS (w/o RGB) [12] 25.002 45.948 1.208

Only SDF-Instant-NGP [11] 1.106 1.297 0.737
SDDF (ours) 1.490 1.247 1.120

Mean absolute error (cm) of SDDF prediction (continued)

Office 1 Office 2 Office 3 Office 4
SDF-Instant-NGP 0.724 1.342 1.608 1.037

SDDF (ours) 0.694 1.236 1.588 1.132
RaDe-GS 0.348 1.258 0.827 0.498
Nerfacto 68.382 69.144 74.168 88.479

RaDe-GS (w/o RGB) 6.654 3.582 0.955 0.500
SDF-Instant-NGP 0.711 1.120 1.395 0.953

SDDF (ours) 0.696 1.081 1.568 1.206

(a) Initial (b) Reduce Overlap (c) Increase Visibility

(d) Initial (e) Optimized
Fig. 5: Visualization of differentiable view optimization. In (a), (b) and (c), the black
camera Ct is at time t. The orange camera Ct+1 is at time t+1 with optimized pose.
The cyan point cloud is Pt and the blue one is Pt+1. The trajectory of Ct+1 during the
optimization process is colored in red. Starting from the setup in (a), Ct+1 is optimized
to reduce the overlap between Pt and Pt+1 as shown in (b). In (c), the camera Ct+1

gets a bigger view not overlapped with Ct’s than (b). The risk loss ensures that Ct+1

stays away from the wall while trying to get a larger view. (d) and (e) show an example
of optimizing multiple trajectory waypoints. With our method, the observed area along
the trajectory is significantly larger.

SDF consistently.
The quantitative results in Table I show that our method

reaches the state of the art for both LiDAR and RGB-D
datasets. Our method has slightly higher errors on RGB-D
datasets because our method only uses depth information from
the RGB-D datasets, whereas RaDe-GS uses both RGB and
depth data.

View Optimization Experiments. The first row of Fig. 5
demonstrates gradient-based next-best view optimization using
our SDDF model. The visualization shows that our method
can reduce the overlap between the two camera views and
increase the observed area. In this example, the area observed
by the two camera views increases to 36.15m2 (+90.3%) from
19.00m2 with the initial viewpoints. In the second row of
Fig. 5, we show an example of scaling up to a trajectory. By
optimizing the waypoints, the observed area increases from
124.55m2 to 177.50m2 (+37.7%).

V. CONCLUSION

In this work, we introduced a new definition of SDDF
suitable for scene-level representation, and developed a model

to learn such SDDFs. Our method uses ellipsoids to obtain
a coarse geometric prior, and a residual network uses latent
features from the ellipsoids to correct the detailed differences
between the prior and the ground truth. Our experiments
demonstrate that SDDF is a promising scene representation
for fast novel view rendering and gradient-based viewpoint
optimization. We hope that our SDDF model inspires advances
in active SLAM techniques in future work.
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