
Fully Convolutional Geometric Features for Category-level Object

Alignment

Qiaojun Feng Nikolay Atanasov

Abstract— This paper focuses on pose registration of different
object instances from the same category. This is required in
online object mapping because object instances detected at test
time usually differ from the training instances. Our approach
transforms instances of the same category to a normalized
canonical coordinate frame and uses metric learning to train
fully convolutional geometric features. The resulting model
is able to generate pairs of matching points between the
instances, allowing category-level registration. Evaluation on
both synthetic and real-world data shows that our method
provides robust features, leading to accurate alignment of
instances with different shapes.

I. INTRODUCTION

Meaningful and detailed environment reconstruction is

an enabling capability for autonomous robot operation in

various tasks, including safe navigation, object manipula-

tion, or human-robot interaction. As embodied agents have

limited storage and computation capabilities, developing

compressed, yet, expressive environment models is a key

problem. Online object-based simultaneous localization and

mapping (SLAM) methods [1], [2] are promising in generat-

ing efficient and semantically meaningful maps composed of

sparse object landmarks. These methods work by detecting,

segmenting and tracking object instances online and using

the semantic information to estimate the object poses and

shapes. Since the object instances observed online are always

different from the stored models, semantic SLAM methods

need to perform cross-instance alignment. Another challenge

is that only partial and potentially low-resolution observa-

tions may be available due to the limited field-of-view or

resolution of the onboard sensors. See Fig. 1 for an example.

Recently, learning-based 3D feature extraction algorithms

have shown promising performance in point-cloud reg-

istration task. Convolutional neural network architectures

can learn powerful descriptors from pre-aligned matching

patches. However, generating matching patches for different

instances in the same category may not be easy. While same-

category objects share similar overall structure, individual

parts may be quite different (e.g., armchair vs an office

chair). Existing works rely on human annotations of sparse

semantically meaningful object parts (e.g., chair legs, back

support, seat) to obtain such matchings across instances [3].

The main contribution of this paper is a learning-based

method for generating dense matching pairs across different

We gratefully acknowledge support from ARL DCIST CRA W911NF-
17-2-0181 and ONR SAI 00014-18-1-2828.

The authors are with Department of Electrical and Computer Engi-
neering, University of California, San Diego, La Jolla, CA 92093, USA
{qjfeng,natanasov}@ucsd.edu

Fig. 1: A sequence of RGB-D images (top) may be used for object-
level mapping. This paper focuses on the important subproblem of
category-level registration. A partial object point cloud (bottom,
left) may be generated from object detection, segmentation, and
tracking (top, purple). A not-identical CAD model (bottom, right)
needs to be aligned to the observed point cloud (bottom, middle)
in order to generate an object-level map.

instances from the same category. We leverage the idea of

normalized canonical coordinates (NCC) [4] to align the

different instances during training and automatically generate

positive and negative examples of matching pairs. We use

metric learning to train a sparse convolutional neural network

to predict cross-instance geometric features [5] suitable for

registration. Our approach enables improved object pose

estimation versus the state-of-the-art on both synthetic and

real-world data.

II. RELATED WORK

3D point cloud features: Traditional methods of hand-

crafted 3D feature include Spin Image [6], FPFH [7],

SHOT [8]. They mainly rely on simple local geometric infor-

mation like normals and histogram. Recently learning-based

methods have gained more attention. 3DMatch [9] applies

3D ConvNet on fixed-size 3D patch represented in truncated

distance function. 3DFeat-Net [10] collects local points in

a radius-fixed ball, uses a detector module to estimate the

local orientation and generates the descriptor after alignment.

3DSmoothNet [11] proposes the idea of smoothed density

value voxelization as the preprocessed input to reduce the

sparsity of the input patch. FCGF [5] leverages the sparse

convolution [12] to build fully-convolutional network in 3D

space and use metric learning to learn the feature. The

point cloud coordinates and associated features are used for

registration to estimate the rigid transformation.



Pose estimation with known model: Assume the object

shape is given, we can estimate its 6DoF pose from RGB

or RGB-D images. PVNet [13] estimates sparse object key-

points on the RGB image via voting mechanism. DPOD [14]

predicts a dense object classification and 2D-3D correspon-

dence mask. There are also algorithms doing a straight-

forward pose regression without explicit associations such

as [15]. [16] trains a CNN to predict the object pose using

pixel surface normals, followed by model selection and align-

ment using ICP. The Scan2CAD [17] dataset contains 9DoF

alignment annotation of CAD models from ShapeNet [18]

w.r.t. the indoor scene reconstruction of ScanNet [19]. They

voxelize the RGBD scan in the form of signed distance

field (SDF). A 3D CNN network is trained to predict sparse

keypoints correspondence with a fixed-size patch input.

Category-level object pose estimation: Objects in the

same category usually share similar structure with relatively

consistent distribution of semantic keypoints [20], such as the

wheels of the car and the chair legs. Category-level semantic

keypoints [3] are predicted on RGB images and a deformable

shape model is fitted to recover the pose. StarMap [21]

extends to predict category-agnostic keypoints by predicting

the keypoint’s normalized canonical coordinate from RGB

image observation. NOCS [4] also uses the idea of normal-

ized canonical coordinate and generate a dense annotation

covering the whole object surface instead of sparse semantic

keypoints. Our work is most similar to NOCS. The main

difference is that we work on point cloud data and the point

feature is predicted instead of the normalized coordinate.

III. PROBLEM FORMULATION

Consider an RGBD camera moving in an unknown en-

vironment. Suppose that a convolutional neural network,

such as Mask R-CNN [22], is used to detect and segment

objects in each RGB image. Suppose that an object tracking

algorithm, such as SiamMask [23], tracks the detections over

time. Suppose also that the camera pose is tracked using

a SLAM algorithm, such as ORB-SLAM2 [24]. Given the

camera trajectory and the segmented RGBD pixels associated

over time, we can construct a point cloud X ∈ R
N×3 of the

object in the world frame by accumulating the partial views

and projecting them using the estimated camera poses.

Assume we have a small database of object models for the

detected category Y = {Y1, . . . ,Yk}, where Yi ∈ R
Mi×3 is

a point cloud. Given a query point cloud X observed online,

we want to find a similar model Y ∈ Y and estimate the pose

T := [R p; 0⊤ 1] ∈ SE(3) that aligns it with X. Define a

distance function between an incomplete point cloud X and

complete point cloud Y as d(X,Y) : RN×3×R
M×3 → R

+.

Our objective is to find an existing model Y∗ and its pose

T∗ such that it fits an incomplete observation X well:

Y∗,T∗ = argmin
Y∈Y,T∈SE(3)

d(T(X),Y), (1)

where the transformation is defined as:

X = [x1 · · · xN ]
⊤

T(X) = [Rx1 + p · · · RxN + p]
⊤. (2)

Fig. 2: Visualization of different chairs in Normalized Canonical
Coordinates (NCCs). Colors indicate the coordinates. The red dots
annotate the same coordinate on different objects. Note that the red
dot on the second chair is occluded by the back. Although not all
points can be associated well in the NCCs, many positive matching
pairs can be discovered.

IV. BACKGROUND

A. Sparse Convolution

Convolutional neural networks (CNNs) can be applied

to 3D data directly by extending all 2D modules by one

dimension. However, this not only increases the computation

needed for training but also ignores the sparse structure of

3D data such as point clouds. Sparse convolution [12] is

an approach for efficient feature extraction on structured 3D

data. Suppose c ∈ Z
n is a coordinate in an n-dimensional

quantized space and its associated feature vector is xc.

Define Vn(K) as the set of unit coordinate offsets around 0

in n-D space with size K in each dimension. For example,

V1(3) = {−1, 0, 1},V2(3) = {V1(3) × V1(3)}. Standard

dense convolution combines features from all the region

nearby:

xout
c =

∑

i∈Vn(K)

Wix
in
c+i. (3)

For sparse convolution, the selected offset i is based on the

non-empty locations of the input. Suppose we can define the

non-empty coordinate space C in for cin and Cout for cout. Then

the sparse convolution is defined as

xout
c =

∑

i∈U(c,Cin)

Wix
in
c+i for c ∈ Cout (4)

, where U(c, C in) = {i|c+i ∈ C in} only consider the existing

adjacent feature value.

A fully convolutional network (FCN) [25] uses convolu-

tion and deconvolution to build the network structure without

maxpooling or upsampling layers. FCN is suitable for dense

prediction and its kernels have larger reception fields. The

idea of fully convolutional layers can be combined with

sparse convolution by using only convolutional layers.

B. Normalized Canonical Coordinate

The task of matching different objects is challenging.

When scans are obtained from different object instance,

the definition of good alignment becomes vague since a

rigid transformation cannot eliminate the intrinsic shape

difference. If the problem is restricted to aligning objects

within the same category, we can leverage the conventions

of object canonical pose. For example, a chair always has



a seat and often a back and a canonical chair pose can

be defined accordingly. The Normalized Object Coordinate

Space (NOCS) is proposed in [4] and here we call this

concept as Normalized Canonical Coordinate (NCC). The

normalized object bounding box has a unit-length diagonal

and is centered at the zero. Fig. 2 visualizes some examples

of the chairs in the category NCC. The NCC of a object can

be recovered given its pose and scale. NCC can bridge differ-

ent objects with different poses and shapes as a intermediate

pose-invariant shape representation.

V. TECHNICAL APPROACH

Given a source point cloud X and target point cloud

Y, we determine the transformation T that aligns X to

Y in two steps. First, we extract features from both point

clouds and establish point-to-point correspondences based on

the features. Next, given the correspondences, we solve the

alignment problem using a robust registration algorithm such

as RANSAC [26] or TEASER [27].

A. Feature Extraction Model

Given a point cloud X, we define a neural network model

f(X;θ) with parameters θ to generate a set of point cloud

features:

FX := f(X;θ) = {f1, . . . , fN} (5)

where fi ∈ R
k is the feature associated with point xi.

We build a feature extractor using the ResUNet network

proposed in FCGF [5], which introduces residual blocks [28]

into the UNet architecture [29] . One normalization layer

is added before the output to generate unit-norm features.

The network is trained using metric learning with training

pairs generated as described in Sec. V-B. We set the feature

dimension to k = 32.

B. Pairs Matching

The main idea of metric learning is to learn a distance

metric between objects in order to establish similarity or

dissimilarity, which aligns with our goal. The goal of 3D

point cloud feature learning is to find a feature space where

matching pairs should be close to each other while non-

matching pairs should be far apart.

For the metric learning method, the generation of positive

and negative pairs is at least as important as the loss de-

sign. 3DMatch [9] generates matching pairs between RGB-

D scans from the camera poses recovered from different

3D reconstruction algorithm. Once two scans are aligned,

positive pairs can be generated by local neighbor search,

while the negative pairs are the remaining ones with larger

distance. Define the positive matching pair set between two

aligned point clouds X,Y as:

p(X,Y) = {(i, j)|‖xi − yj‖ < τ, i ≤ N, j ≤ M, i, j ∈ N},
(6)

where τ is the local neighbor search region. During training

we usually only keep a subset of the positive matching pairs.

Negative pairs are sampled from the complement set of the

positive pair set.

Fig. 3: The observed point cloud (left) can be aligned with different
CAD models (middle) in normalized canonical coordinate (right)
to generate matching pairs. In the right column the observed is in
red and the model is in green.

We use the idea of NCC to bridge the connection between

different object instances from the same category. We can

convert an object point cloud X to the canonical frame with

its pose TX ∈ SE(3) annotation and normalize it with the

scale sX ∈ R

XNCC = NCC(X, sX,TX) = s−1
X ·T−1

X (X) (7)

where T−1
X (·) follows the same definition in eq. (2). For

two different object instances point clouds X,Y, we convert

them both into the NCC and find the positive matching pair

set

p′(X,Y) = p(XNCC,YNCC) (8)

as shown in Fig. 3.

Our main intuition is that though we cannot get most of

the points perfectly aligned, there are still enough roughly-

aligned parts. Especially if we focus on the model pairs that

are more similar than a random pick, we can generate quite a

lot reasonable positive matching pair by extending the local

neighbor search radius τ in eq. (6). More details on matching

pair generation and training on our customized dataset are

introduced in Section VI.

C. Metric Learning Loss

Unlike other learning-based 3D feature extractors which

usually have some hand-crafted pre-processing step to con-

catenate some local feature, we uses fully-convolutional

sparse convolution to automatically extract features. We

define contrastive loss function [30] used in metric learning

for training. Assume x,y are two points from different

but aligned point clouds X,Y and i, j are their associated

indices respectively. The associated features generate through

feature extractor model f(;θ) in eq. (5) are fx, fy. mxy

indicates the matching information.

mxy =

{

1, if (i, j) ∈ p(X,Y)
0, otherwise

(9)

See eq. (6) for the definition of positive matching pairs

p(X,Y). Define d(·, ·) as a distance function between fea-

tures. The contrastive loss is defined as

Lcon(fx, fy) = mxy(d(fx, fy)−ppos)
2+m̄xy(d(fx, fy)−pneg)

2

(10)

where m̄xy = 1 − mxy, ppos, pneg are distance threshold

for positive and negative pair. These thresholds should be



design such that the positive pairs move closer and the

negative pairs get separated when the contrastive loss is

decreasing. We set ppos = 0.1, pneg = 1.4 for our normalized

feature vectors. And the 2-norm is used for distance function

between features.

D. Registration with Correspondences

After the training, we have a neural network model as the

feature extractor function f(·;θ). We fixing the θ, use the

feature extraction model for inference and extract point-wise

features FX,FY for the point clouds X,Y as in eq. (5). We

can perform the nearest-neighbor search for each point in

X to generate correspondences, which is similar to eq. (6)

but calculate the Euclidean distance between feature vectors

instead of point coordinates.

pf (FX,FY) = {(i, ji)|ji = argmin
j

d(fxi, fyj),

i ≤ N, ji ≤ M, i, ji ∈ N}
(11)

We then solve the pose estimation, or the point cloud regis-

tration problem with correspondences using robust methods

like RANSAC [26]. In each iteration, RANSAC randomly

samples k pairs of matching points {(xi,yi)}
k
i=1 and solve

the minimization problem

T∗ = arg min
T∈SE(3)

k
∑

i=1

‖T (xi)− yi‖
2 (12)

using Kabsch algorithm [31]. Then the T∗ is evaluate on the

whole set to see how many inliers it contains as the consensus

set. The estimation with largest consensus set is maintained.

We use the RANSAC implementation in Open3D [32].

VI. EXPERIMENTS

A. Dataset

Our dataset is built from Scan2CAD [17]. We focus on the

category of chair and we select the scenes from subcategory

of Lobby and Conference Room in ScanNet [19]. Based on

the appearance annotations of Scan2CAD we collect 137

chair models for training and 42 chair models for testing,

both from ShapeNet [18]. We build a synthetic dataset from

these ShapeNet models in canonical pose. In the synthetic

dataset, for each CAD model we render depth images from

10 fixed viewpoints and convert them into point clouds.

To prepare for the non-identical model matching, we

decide to annotate the model neighboring pairs instead of

matching each pair of them. This step acts as providing an

oracle for choosing the Y∗ in eq. (1). We choose the 3-

nearest-neighbors for each model’s point cloud based on the

Earth Mover’s distance (EMD) [33]. For two point sets X,Y
with same size, the Earth Mover’s distance is defined as

dEMD(X,Y) = min
Φ:X→Y

∑

x∈X

‖x− Φ(x)‖2 (13)

where Φ : X → Y is a one-to-one correspondence. We

sample 2048 points on each CAD model to calculate the

EMD. For both training and testing set the neighbors are

annotated. Notice for the CAD models in the testing set their

neighbors are selected only in the training set.

For the real-world data, we look into the scene reconstruc-

tion meshes in ScanNet. From the 117 training scenes we

segment out 974 chair meshes and convert them into point

clouds. Also for the 45 testing scenes 331 chairs are selected.

For each of these chair the Scan2CAD provides its associated

ShapeNet CAD model and its pose. We use this to evaluate

the performance of real-world point cloud pose estimation.

Besides, some RGB-D images with object segmentations are

collected for quantitative evaluation in Sec. VI-D.

B. Evaluation Metric

We borrow the idea of matched fragments from [34] and

evaluate the accuracy of matching pairs. Assume X and Y

are two associated point clouds with the matching between

the same index. The groundtruth transformation from X to Y
is T∗. The matching accuracy evaluates how many matching

pairs can be aligned within some threshold τ1 after applying

the groundtruth transformation.

MatchAcc(X,Y) =
1

n

n
∑

i=1

1 (‖T∗(xi)− yi‖2 < τ1) (14)

Here we set τ1 = 0.05 m. In [34] the authors set the positive

inlier ratio to be 0.05, indicating that as long as there are 5%
of the matching pairs we can get a good registration result

using some robust algorithms to remove the outliers.

For cross-instance matching we cannot have a general

matching distance due to the shape variations. Complemen-

tarily, we can also estimate the relative pose and measure the

relative error. The pose can be represented by the rotation

part and translation part. Define the groundtruth pose as

(R∗,p∗) and the estimated pose as (R̂, p̂), where R∗, R̂ ∈
SO(3),p∗, p̂ ∈ R

3. We can decouple them to define the

relative rotation error (RRE)

RRE(R̂,R∗) = arccos{[tr (R̂TR∗)− 1]/2} (15)

and the relative translation error (RTE)

RRE(p̂,p∗) = ‖p̂− p∗‖2 (16)

C. Synthetic Dataset: ShapeNet

From the synthetic dataset, each CAD model in the

training set and its 10 point clouds observations at different

poses are used for model training. We use the curriculum

learning [35] to verify our cross-instance matching data

augmentation idea so that the training procedure is more

stable. We first train on the same-instance pairs. Each CAD

model can pair with its own incomplete point clouds to

generate 10 same-instance pairs. The baseline model is

trained on the pairs for 100 epochs.

Afterwards we introduce cross-instance matching pairs for

the training. Based on the EMD neighbors we compute, we

generate pairs between each CAD model and their EMD-

neighboring CAD models. Also we pair the incomplete depth

image point cloud with its EMD-neighboring CAD models.

We keep a few same-instance pairs as used in the baseline



Fig. 4: Examples of point feature embedded by t-SNE. Column 1: pointcloud from single depth scan. Column 2: identical CAD model.
Column 3&4: neighbor models.

Fig. 5: Comparing the models trained with (bottom row) and without (top row) cross-instance matching data on synthetic data. Column
1 and 3 show the point feature embedded by t-SNE. The depth scan is on the left and the CAD model is on the right. The blue lines
indicate the accurate match among the total 1000 sampled matches. Column 2 and 4 show the final registration results based on 1000
matching pairs. The CAD model is in blue and the depth scan is in yellow. The negative matching pairs are not shown, which cause the
pose estimation failure.

Fig. 6: Results on ShapeNet synthetic data. Left: matching accuracy.
Right: relative rotation error. FCGF [5] is the baseline model w/o
cross-instance matching.

to make the training more stable. The model with cross-

instance matching is trained for another 100 epochs. For a

fair comparison, we also keep training the baseline model for

another 100 epochs solely on same-instance pairs and name

it as the model without cross-instance matching.

By pairing with EMD neighbor we can discover more

meaningful and stable matching pairs. And we may derive

Fig. 7: Results on ScanNet real-world data. Left: matching accuracy.
Right: relative rotation error. FCGF [5] is the baseline model w/o
cross-instance matching. Our w/ real data is the model trained with
real-world point clouds.

implicit connections with more than the neighbors since the

neighbor CAD also has its own neighbor. Notice that here the

neighbor CADs are all included in the original training set.

We are not introducing new data but generate new matching

pairs in the original database. This can be viewed as a data

augmentation strategy for this specific feature learning task.



TABLE I: The percentage of the testing data within the RRE/RTE
threshold. The RRE values are aligned with Fig. 6, 7. Ours+ is the
model trained on the real-world data.

Dataset Method
RRE (degree) RTE (cm)

10 20 30 5 10

Synthetic
FCGF[5] 48.02 68.49 74.84 47.38 72.78

Ours 59.21 75.56 78.57 55.32 78.49

Real-world
FCGF[5] 41.49 63.58 69.25 45.97 68.06

Ours 50.15 72.54 75.82 54.33 74.33
Ours+ 65.07 80.00 82.09 69.55 83.88

In Fig. 4 we visualize the point cloud features between

the partial point cloud and the CAD models by embedding

the high dimensional feature vector using t-SNE [36] and

coloring the point cloud.

During testing, the incomplete point clouds associated

with the CAD models in the test set are used as observation.

We assume that we don’t have access to the test models

that generate these observation. Instead, we have the pre-

selected EMD neighbors of each test CAD model from the

training set. For each observed point cloud, three models

from the training set is provided as candidates and we use

the trained model for the task of cross-instance matching and

pose estimation. The comparison result is shown in Fig. 6 and

Table. I. We visualize some comparing cases on pose estima-

tion in Fig. 5. We can see that with cross-instance matching

data included for the training, the model can generate more

consistent feature vectors across different instance, estimate

more inlier matching pairs and also perform better on the

pose estimation task.

D. Real-world Dataset: ScanNet

For the real-world dataset we are trying to match the CADs

with the segmented point cloud from the scene reconstruction

mesh. Here we only use the annotated CAD model from

Scan2CAD but not the neighbor models because the potential

sim-real domain gap. We do a transfer learning, training

on the basis of the model learned on the synthetic dataset

which has already learned from cross-instance data. Fig. 7 is

showing the performance of different models and quantitative

results are listed in Table. I. With cross-instance matching

training the model can have a better performance on the real-

world data even there is domain transfer gap and the model

has never seen real-world data. Also with transfer learning

on the real-world data the model can have higher matching

accuracy and the lower rotation and translation error.

We visualize some qualitative result in Fig. 8. Here we

extract the observed object point cloud from a segmented

RGB-D image. The first and second rows show examples

with relatively complete observations. The third example

is incomplete due to image truncation. The fourth and the

fifth observed objects are sharing the same CAD model

for pose estimation. Most of them are showing reasonable

performance. There are some failure cases shown in Fig. 9.

When the inlier matching pairs are limited, the RANSAC

algorithm provides unstable estimation. We observe that

observation from the back of the chair is challenging for the

model because it is very similar to a plane without specific

geometric structure. Also sometimes the pose estimation

Fig. 8: Examples on matching the point cloud segmented from a sin-
gle RGB-D image. Column 1: RGB images and object segmentatin
masks in purple. Column 2 & 3: color-coded point cloud features of
the observed objects and the CAD models. Column 4: Alignment
results with the CAD models painted in grey.

of cube-shape sofa chair is noisy. One possible reason is

that there are too much outlier matching pairs on the plane

surfaces. One potential solution to this is to train a classifier

to justify useful points and their features for pose estimation

instead of using all of them or randomly sampling a subset.

VII. CONCLUSION

In this work, we perform the category-specific cross

instance point cloud matching and pose estimation. We

propose to convert different instances from the same category

into the normalized canonical coordinate to make a good

alignment, which is helpful for positive matching pairs

generation in metric learning. We train a fully-convolutional

sparse convolution model for point cloud feature extraction.

During testing, we use RANSAC to estimate the pose with

associations from the features. Our future work will focus

on the prediction and optimization in the shape-deformation

space. It is interesting to investigate more on the problem

of CAD model retrieval given partial observations. Given a



Fig. 9: Failure cases on RGB-D point cloud registration. Column
1: RGB images and object segmentatin masks in purple. Column 2
& 3: color-coded point cloud features of the observed objects and
the CAD models. Column 4 & 5: Different alignment results after
running RANSAC, with the CAD models painted in grey.

relative good pose and shape initialization, we want to refine

the object pose and shape jointly.

REFERENCES

[1] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and
A. J. Davison, “SLAM++: Simultaneous Localisation and Mapping at
the Level of Objects,” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2013, pp. 1352–1359.

[2] S. L. Bowman, N. Atanasov, K. Daniilidis, and G. J. Pappas, “Proba-
bilistic Data Association for Semantic SLAM,” in IEEE International

Conference on Robotics and Automation (ICRA), 2017, pp. 1722–
1729.

[3] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis,
“6-DoF Object Pose from Semantic Keypoints,” in IEEE International

Conference on Robotics and Automation (ICRA), 2017, pp. 2011–
2018.

[4] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas,
“Normalized Object Coordinate Space for Category-Level 6D Object
Pose and Size Estimation,” in IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019, pp. 2637–2646.

[5] C. Choy, J. Park, and V. Koltun, “Fully Convolutional Geometric
Features,” in IEEE/CVF International Conference on Computer Vision

(ICCV), 2019, pp. 8957–8965.

[6] A. E. Johnson and M. Hebert, “Using Spin Images for Efficient Object
Recognition in Cluttered 3D Scenes,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 21, no. 5, pp. 433–449, May
1999.

[7] R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature Histograms
(FPFH) for 3D registration,” in IEEE International Conference on

Robotics and Automation (ICRA), May 2009, pp. 3212–3217.

[8] S. Salti, F. Tombari, and L. D. Stefano, “SHOT: Unique signatures of
histograms for surface and texture description,” Computer Vision and

Image Understanding, vol. 125, pp. 251–264, 2014.

[9] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser,
“3DMatch: Learning Local Geometric Descriptors from RGB-D Re-
constructions,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), July 2017, pp. 199–208.

[10] Z. J. Yew and G. H. Lee, “3DFeat-Net: Weakly Supervised Local 3D
Features for Point Cloud Registration,” in European Conference on

Computer Vision (ECCV), 2018, pp. 630–646.

[11] Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The Perfect Match:
3D Point Cloud Matching With Smoothed Densities,” in IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), June
2019, pp. 5540–5549.

[12] C. Choy, J. Gwak, and S. Savarese, “4D Spatio-Temporal ConvNets:
Minkowski Convolutional Neural Networks,” in IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR), June 2019,
pp. 3070–3079.

[13] S. Peng, Y. Liu, Q. Huang, X. Zhou, and H. Bao, “PVNet: Pixel-Wise
Voting Network for 6DoF Pose Estimation,” in IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June 2019, pp.
4556–4565.

[14] S. Zakharov, I. Shugurov, and S. Ilic, “DPOD: 6D Pose Object
Detector and Refiner,” in IEEE/CVF International Conference on

Computer Vision (CVPR), 2019, pp. 1941–1950.

[15] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox,
“PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose
Estimation,” in Proceedings of Robotics: Science and Systems (R:SS),
June 2019.

[16] S. Gupta, P. Arbeláez, R. Girshick, and J. Malik, “Aligning 3D
models to RGB-D images of cluttered scenes,” in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2015, pp.
4731–4740.

[17] A. Avetisyan, M. Dahnert, A. Dai, M. Savva, A. X. Chang, and
M. Nießner, “Scan2CAD: Learning CAD Model Alignment in RGB-
D Scans,” in IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019, pp. 2609–2618.
[18] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan, Q.-X.

Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi,
and F. Yu, “ShapeNet: An Information-Rich 3D Model Repository,”
ArXiv, vol. abs/1512.03012, 2015.

[19] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), July 2017, pp. 2432–2443.
[20] Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond PASCAL: A bench-

mark for 3D object detection in the wild,” in IEEE Winter Conference

on Applications of Computer Vision (WACV), March 2014, pp. 75–82.
[21] X. Zhou, A. Karpur, L. Luo, and Q. Huang, “StarMap for Category-

Agnostic Keypoint and Viewpoint Estimation,” in European Confer-

ence on Computer Vision (ECCV), 2018, pp. 328–345.
[22] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 42,
no. 2, pp. 386–397, Feb 2020.

[23] Q. Wang, L. Zhang, L. Bertinetto, W. Hu, and P. H. S. Torr, “Fast
Online Object Tracking and Segmentation: A Unifying Approach,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019, pp. 1328–1338.
[24] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source

SLAM System for Monocular, Stereo, and RGB-D Cameras,” IEEE

Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, Oct 2017.
[25] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks

for Semantic Segmentation,” in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2015, pp. 3431–3440.
[26] M. A. Fischler and R. C. Bolles, Random Sample Consensus: A

Paradigm for Model Fitting with Applications to Image Analysis and

Automated Cartography, 1987, p. 726–740.
[27] H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and Certifiable Point

Cloud Registration,” arXiv: 2001.07715, 2020.
[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for

Image Recognition,” in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2016, pp. 770–778.
[29] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional

Networks for Biomedical Image Segmentation,” in Medical Image

Computing and Computer-Assisted Intervention (MICCAI), 2015, pp.
234–241.

[30] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality Reduction by
Learning an Invariant Mapping,” in IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition (CVPR), vol. 2,
June 2006, pp. 1735–1742.

[31] W. Kabsch, “A solution for the best rotation to relate two sets of
vectors,” Acta Crystallographica, vol. 32, no. 5, pp. 922–923, 1976.

[32] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for
3D data processing,” arXiv:1801.09847, 2018.

[33] H. Fan, H. Su, and L. Guibas, “A Point Set Generation Network for
3D Object Reconstruction from a Single Image,” in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), July 2017, pp.
2463–2471.

[34] H. Deng, T. Birdal, and S. Ilic, “PPFNet: Global Context Aware Local
Features for Robust 3D Point Matching,” in IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June 2018, pp.
195–205.

[35] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
Learning,” in Proceedings of the 26th Annual International Conference

on Machine Learning, 2009, p. 41–48.
[36] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal

of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.


