
Dynamic Handover:
Throw and Catch with Bimanual Hands

Binghao Huang*,1 Yuanpei Chen*,2 Tianyu Wang1 Yuzhe Qin1

Yaodong Yang2 Nikolay Atanasov1 Xiaolong Wang1

UC San Diego1 Peking University2

Abstract: Humans throw and catch objects all the time. However, such a seemingly
common skill introduces a lot of challenges for robots to achieve: The robots need
to operate such dynamic actions at high-speed, collaborate precisely, and interact
with diverse objects. In this paper, we design a system with two multi-finger
hands attached to robot arms to solve this problem. We train our system using
Multi-Agent Reinforcement Learning in simulation and perform Sim2Real transfer
to deploy on the real robots. To overcome the Sim2Real gap, we provide multiple
novel algorithm designs including learning a trajectory prediction model for the
object. Such a model can help the robot catcher has a real-time estimation of
where the object will be heading, and then react accordingly. We conduct our
experiments with multiple objects in the real-world system, and show significant
improvements over multiple baselines. Our project page is available at https:
//binghao-huang.github.io/dynamic_handover/.

Keywords: Bimanual Dexterous Manipulation, Sim-to-Real Transfer

Figure 1: We propose Dynamic Handover, a new bimanual dexterous hands system designed for throwing and
catching tasks. The system consists of two Allegro Hands, each individually attached to a separate XArm robot,
arranged in a facing configuration. Using multi-agent reinforcement learning, we train policies in a simulation
environment and subsequently transfer them to the real world.

* Indicates equal contribution.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://binghao-huang.github.io/dynamic_handover/
https://binghao-huang.github.io/dynamic_handover/


1 Introduction

Human’s ability to throw and catch objects exists commonly in both sports (e.g., baseball) as well
as casually passing through items in daily life. In the context of handing over objects, enabling the
robots to obtain such bimanual manipulation skills not only improves efficiency, but also extends
the workspace of the robots by a large margin outside the robots’ kinematic range. Importantly, it
provides a contact-free and safer solution for robot interactions, since direct handing objects over can
cause collisions between two manipulators, which brings damage. To enable robust manipulation of
diverse objects, we propose to use two multi-finger robot hands as the thrower and the catcher.

Learning such skills brings multiple challenges: (i) Precise, high-speed dynamic action: Both robot
hands will need to obtain dynamic extrinsic dexterity at high-speed and operate precisely at the same
time. A small error or a mismatch of coordination will easily lead to failure. (ii) Diverse objects:
To train a policy that is applicable to diverse objects makes the problem even more challenging.
Traditional approach with planning based on full object state estimation can introduce new errors and
is hard to generalize to unseen objects with limited training data; (iii) High-dimensional action space:
Learning bimanual manipulation with two multi-finger hands introduce a high-dimensional state and
action space, which increases the difficulty for optimization.

In this paper, we propose a new system and a new method for throwing an object with one hand
and catching it with the other hand in a coordinated manner. Our hardware system includes two
xArm robots attached with two Allegro Robot Hands (each with 16 degrees of freedom) in the end
separately as shown in Fig. 2. The two hands will need to operate collaboratively at the same time.
To solve this problem, we propose an approach leveraging Reinforcement Learning to train a policy
in simulation and then perform Sim2Real transfer on the real robots. Specifically, to solve the above
challenges, we introduce three key technical contributions:

• Multi-Agent Reinforcement Learning (MARL). Dexterous manipulation with RL has been
extensively studied for learning robust and generalizable skills [1, 2, 3]. However, it has rarely been
explored for dynamic manipulation with bimanual hands. We propose to tackle this problem as a
multi-agent problem, with each hand being one agent. This helps improve the coordination of two
hands during manipulation which allows better Sim2Real transfer. Meanwhile, we train the policy
with multiple diverse objects at the same time, which allows generalization to unseen objects.

• Dynamic dexterity. Instead of explicitly estimating the dynamic properties and modeling them,
using RL with randomization allows the network to learn to handle diverse dynamics. We apply
various physical property randomization during training, including randomization in friction, inertia,
the object’s center of mass, and contact force. To enhance the stability of the thrower, we also
investigate how the quality of the initial grasp of the object can affect the performance.

• Object trajectory prediction. While we can perform various randomization approaches for
training, there will always be a physics gap when transferring to the real robot. To further increase
the robustness for catching, we introduce a model to predict the object’s future trajectory and
destination ahead in real time. Instead of pre-defining the object destination and asking both
hands to follow, the catch policy will take the predicted object’s destination position as input in a
close-loop manner. This allows flexible real-time adjustment of the catch policy.

We conduct both simulation and real-world experiments. The results demonstrate that our method
enables the hands to successfully throw and catch the object, and surpass baselines by a large
margin. We observe applying MARL in training effectively reduces the sim2real gap, as using partial
observations for each agent improves the robustness of each policy. Our prediction module offers
extra flexibility to help the robot hand to adjust in real-time and accurately catch the object. To our
knowledge, this is the first work that enables bimanual dynamic multi-finger hands manipulation.

2 Related Work
Multi-Agent Reinforcement Learning. Multi-Agent Reinforcement Learning (MARL) is a powerful
approach for complex tasks involving multiple interacting agents. In MARL, agents learn decision-
making based on interactions with others and the environment [4, 5, 6, 7, 8]. Multi-Agent Proximal

2



Policy Optimization (MAPPO) [9] extends policy gradient algorithms into multi-agent scenarios
by addressing challenges such as non-stationarity, coordination, and credit assignment. In robotics,
MARL has been applied to cooperative navigation [10, 11], UAV swarm [12, 13], and distributed
manipulation [14, 15]. Similar to us, Zhang et al. [16] employ disentangled attention within MARL
for bimanual tasks, while Li et al. [17] use symmetry-aware actor-critic for efficient handover. Both
studies were conducted exclusively in simulation without complex dynamics, allowing for end2end
MARL training. In contrast, we propose a multi-stage training pipeline for MARL to overcome
sim2real transfer challenges.

Dynamic Manipulation. Different from common manipulation tasks like grasping and opening
drawers, dynamic manipulation abandons the quasi-static assumption of interaction. It leverages
object dynamics, such as inertia and momentum, to handle tasks requiring high-speed actions and
extended robot workspace, like throwing and catching [18, 19, 20, 21]. Traditional systems for such
tasks often rely on handcrafted models of system dynamics, which may fall short when dealing with
difficult-to-estimate parameters or new objects. To address this issue, recent works [22, 23, 24, 25, 26]
employ data-driven approaches to optimize control commands using partial dynamics models. For
example, Chi et al. [25] propose an iterative residual policy to solve tasks with complex dynamics;
Zeng et al. [24] use end-to-end training to learn stable grasps that generate predictable throws.
However, these works focus on low-DoF manipulators rather than high-DoF dexterous hands, which
introduce additional complexities due to intricate hand-object interactions. [27] uses Population
Based Training (PBT) to train the throws and catches using dual hands. However, while our
methodologies primarily focus on sim2real transfer, [27] does not include the real-world experiments.
In this study, we use a learning-based approach to tackle dynamic problems, specifically throwing
and catching, with multi-finger dexterous hands. We explore the impact of initial dexterous grasps on
throwing performance and investigate strategies to bridge the sim2real gap in the context of dynamic
manipulation.

Bimanual Dexterous Manipulation. In recent years, the robotics community has increasingly
focused on dexterous manipulation due to its great flexibility and human-like dexterity. Researchers
have developed methods using dexterous hands for tasks such as grasping [28, 29, 30, 31, 32], in-
hand rotating [33, 34, 35, 36, 37], and manipulating deformable objects [38, 39, 40, 41]. Similar to
us, DexPoint [42] achieves generalizable manipulation for grasping and door opening by training
on multiple objects with a Allegro hand. However, complex tasks like throwing and catching
objects require a bimanual robot system to achieve human-level manipulation skills. Researchers
have investigated bimanual manipulation through task planning [43, 44, 45], and reinforcement
learning [46, 47, 48]. However, most previous work focused on using two parallel jaw grippers for
quasi-static interaction, leaving dexterous bimanual manipulation largely unexplored. Few studies
have delved into this area, mainly in simulation without real robot validation [49, 50, 51]. In this
paper, we take a step forward by developing a bimanual dexterous manipulation system capable of
throwing and catching various objects. Our work also demonstrates that simulation training without
real-world data can still tackle this challenging task even with great sim2real gap.

3 System Setup

Task Description. In this work, we focus on the bimanual Catching and Throwing task with two
dexterous robot hand. This task involves two robot agents: (i) a thrower robot agent (Figure 2 right)
that needs to execute swift movements to toss the grasped object towards the other side, and (ii) a
catcher agent (Figure 2 left) that needs to react dynamically to catch the airborne object. This task
is important because it enables the catcher robot to access objects beyond its kinematic range by
leveraging the object’s momentum imparted by the thrower. It also serves as a good test-bed for
evaluating the coordination and performance of bimanual systems in high-speed, real-time scenarios.

Real-world Setup. We construct a bimanual system for executing our throwing and catching task, as
depicted in Figure 2. The system includes two arm-hand subsystems and a RealSense D435 camera.
Each arm-hand subsystem features a 6-DoF XArm-6 robot arm paired with a 16-DoF Allegro Hand,
culminating in a 44-DoF system. To create a closed-loop policy, we use a RealSense camera to

3



Figure 2: Real Robot System: We employ two Allegro Hands, each individually mounted on separate XArm-6
robots, arranged in a face-to-face configuration. We incorporate a RealSense D435 camera for real-time object
position tracking, which is oriented towards the working space. We use k prior states in observation.

capture the real-time position of objects within the catcher robot’s frame of reference. For observation,
distinct feedback mechanisms are provided for each agent, as depicted at the bottom of Figure 2.
The thrower (Figure 2: right) depends exclusively on its own proprioceptive data, while the catcher
(Figure 2: left) obtains feedback from not only its own proprioception but also the object’s real-time
positions estimated by the camera. In other words, the thrower operates based on its current state,
whereas the catcher necessitates both proprioceptive and visual input to dynamically and interactively
perform catching actions. Further information regarding this system’s implementation can be found
in the Appendix.

Simulation Setup. In this work, we use the IsaacGym physical simulator [52] for training our
throwing and catching task. The simulation setup is shown on the left side of Figure 1. The simulation
frequency is set at 120Hz while the control frequency is 20Hz. We train the end-to-end reinforcement
learning policy in the simulated environment and then transfer the policy to the real world. Further
information regarding the details about the simulation setup (e.g. policy architecture) can be found in
the Appendix.

Action Space. The policy outputs a 22-dimensional PD control target, with the first six dimensions
corresponding to XArm-6 and the remaining 16 dimensions corresponding to Allegro hand. For
the XArm-6, we employ delta joint positions as the control target, while for the Allegro hand, we
utilize absolute joint positions as the control target. This design choice is made to avoid jerky motion
of robot arm for safety reasons, while still allowing the hand to swiftly react and release its grasp
to throw the object. In our experiments, we find that controlling only the second and third joints
of the robot arm and keeping the other four joints fixed results in a more effective and safer policy.
Therefore, the action space consists of an 18-dimensional target for the thrower and a 22-dimensional
target for the catcher.

4 Learning Bimanual Dexterous Hands Policy

Catching an object in mid-air poses significant difficulties due to the high-speed requirement. First,
object’s real-time velocity and anticipated trajectory must be taken into account in order for the
catcher to determine its movement. Second, even though the thrower can consistently toss the object
toward the pre-defined target goal in simulated environment, the policy transfer to the real world is
imperfect due to the substantial dynamics gap between simulation and real physical. Consequently,
there is a discrepancy between the pre-defined throwing goal and the object’s actual destination. In
light of these two challenges, a goal estimator becomes crucial for predicting the thrower’s actual

4



Figure 3: Joint End2End Learning: The two agents receive input from both their own observations and the
catcher agent additionally receives the predicted catching position. The goal estimator takes past 20 frames of
the object’s positions as input and predicts the catch goal for each time step. We use a violet ball to represent the
pre-defined goal for the throwing. The orange ball represents the predicted goal for the catcher to catch during
the throwing task. The blue ball represents the object that is currently been manipulated.

destination instead of the predetermined target goal. This allows the catcher to move based on the
forecasted object destination and successfully catch it.

To achieve this, we introduce a novel three-stage training pipeline for learning bimanual throwing and
catching. (i) In the first stage, we train a base policy using Multi-Agent RL to tackle the task, with
the catcher observing the pre-defined throwing goal. The policy trained during this stage is expected
to perform well within the simulator but may hardly transfer to the real world. (ii) Next, we freeze
the base policy and train a goal estimator through supervised learning, using the rollout trajectory of
the base policy as training data. (iii) Finally, we replace the pre-defined throwing goal in the catcher’s
observation with the estimated goal and unfreeze the policy for fine-tuning both the base policy and
the goal estimator in an end-to-end fashion. The refined policy is expected to bridge the dynamics
gap between simulation and reality with the predicted object’s future trajectory.

4.1 Stage1: Multi-Agent Reinforcement Learning.
We employ the Multi-Agent Proximal Policy Optimization (MAPPO) [9] in a non-parameter sharing
way to train the thrower and the catcher to obtain basic policies in the first stage. MAPPO is an
application of the PPO algorithm to multi-agent settings. It leverages centralized training with
decentralized execution, allowing each robot agents to efficiently accomplish the cooperative task
using partial observations.

As shown at the bottom of Figure 2, the observations for the thrower and catcher in MAPPO training
is not identical. The thrower’s policy, denoted as π0, receives its proprioception and a pre-defined
target position for throwing. In contrast, the catcher’s policy, denoted as π1, takes as input its
proprioception, the pre-defined goal position and the current position of the object for catching. To
satisfy MAPPO’s requirement for equal input dimensions across agents, we pad zeros to the thrower’s
input for dimension alignment. Besides, we include observations from past k frames as input for both
policies to provide temporal information. In our implementation, we set k = 2.

Given the object position pt, target goal position Gt, the velocity of the object v, the unit direction
vector from thrower to catcher û, and robot joint torque τ , we design the reward function using
three components: (i) distance between object and throwing goal; (ii) object velocity projected in
the direction from thrower to catcher; (iii) robot joint torque. The final reward r can be computed
as r = rdis + rlinvel + rtorque, where rdis = exp(−20 ∗ (pt − Gt)) represents the distance,
rlinvel = clamp(v · û,−0.1, 0.1) denotes the object’s velocity towards the catcher, and rtorque =
−0.003 ∗ ∥τ∥22 corresponds to the torque penalty.

4.2 Stage2: Goal Estimator Learning.

After training the basic policies, the next step involves freezing the basic policies and training a goal
estimator (Orange Block in Figure 3) to predict the goal for the catcher based on the trajectory of

5



the object. This is a crucial step due to the sim2real gap, which implies that although the thrower
may consistently hit the goal in simulation, it is unlikely to achieve the same level of accuracy in the
real world. Therefore, predicting the actual goal based on the object’s trajectory becomes essential
for improving sim-to-real transfer. In this stage, we utilize the historical positions of the object over
a span of k frames as input to the goal estimator. The output of the goal estimator is the predicted
3D position of the goal, which provides crucial information for the catcher to anticipate the intended
catching point and enhance the coordination between the two hands. We use Adam to optimize the
L2 distance between the position of the predicted goal and the thrower’s goal until convergence:

L(ω) = ∥ω(p1
t−k:t)− G0

t ∥2 (1)

where p1
t−k:t is the position of the object from t− k to t frames, G0

t is the thrower’s goal, and the 0
and 1 represent the thrower and catcher respectively. It is important to highlight that in the previous
training stage, the object’s landing point was primarily influenced by the thrower’s goal. This is
because the thrower, operating in the simulation environment, had the ability to consistently hit the
specified goal in the simulation.

4.3 Stage3: End2End Joint Learning.

In stage 1, the catcher’s base policy uses a pre-defined throw goal in its observation. In this stage, we
replace the pre-defined goal with the predicted one from the goal estimator. However, the distribution
shift brought by this replacement can result in compounding errors. To address this issue, we jointly
fine-tune the goal estimator and the policy network in this stage, as visualized in Figure 3, allowing
the catcher to adapt to the goal estimator. For example, when the goal estimator is inaccurate, the
policy will not depend solely on it for decision-making. This joint training approach helps reduce
compounding errors when integrating the goal estimator with the policy.

5 Experiments
Evaluation Criterion. To evaluate the performance of the trained policies for throwing and catching,
we consider several metrics as follow:

(i) Success Rate(SR): It is calculated as the ratio of successful throws and catches to the total attempts.
A better policy will lead to a higher Success Rate.

(ii) Hit Rate(HR): This metric is defined as the proportion of objects that successfully hit the hand
palm of catcher. A better policy and goal estimator will lead to a higher Hit Rate.

Training and Dataset. During the training process, we utlize three different objects: a ball, a cube,
and a rod, which are three typical geometries for robot manipulation. At the beginning of each
episode, we randomly select one object for training. For simulation experiments, we expand the
object set to include additional objects to evaluate the generalizability of our policy to novel objects.
The objects used in the simulation experiments are depicted in Figure 5(a) and Figure 5(b). We
intentionally incorporate a rod during the training procedure, as we find this leads to a more robust
policy in the training. Specifically, we observed that the simultaneous movement of all fingers when
throwing an object led to more robust results, whereas when using balls/square objects, policy often
used only a few fingers. Therefore, we designed the shape of the rod in training. If the policy wants
to throw the rope stably, it must learn to use all of its fingers in throwing, so it can make our policy
more robust. Further discussion about using the rope for training can be found in the Appendix. In
the real-world experiments, we employ sandbags in three different shapes for throwing, as shown in
Figure 5(c): a ball, a cylinder, and a triangle prism.

Baselines. In this paper, we compare our method with the following baselines:

(i) Open-Loop Policy: We employ a pre-defined trajectory for the bimanual hand-arm system to
execute the throwing and catching task. The trajectories are collected on the real robot using
kinesthetic teaching and replayed later without considering feedback or adjustment during execution.

6



Settings Known Obj. Novel Obj.
w/o Multi-Agent 0.89± 0.07 0.24± 0.05
w/o Goal Estimation 0.88± 0.04 0.22± 0.04
w/o Both 0.93± 0.07 0.12± 0.06
Ours 0.95 ± 0.07 0.37 ± 0.04

Table 1: Ablation Study in Simulation: Success Rate
of throwing and catching task on different objects in
simulation. We use 11 trained objects and 14 novel
objects. The results are averaged on 5 seeds, each seed
has 100 trails.

Figure 4: Training Curves. The plot shows multi-
object training curves of our method and 3 baselines.

Figure 5: Objects Sets. (a) Training objects. (b)
Additional objects in evaluation. (c) Real-world
objects.

(ii) Without Multi-Agent: We train our policy using PPO instead of using MAPPO. However, we still
incorporate goal estimation during the learning process. Under this setup, both agents share the same
observation.

(iii) Without Goal Estimation: We restrict our learning process to the first stage in Section 4 with
MAPPO algorithm and evaluate the policies without goal estimation.

(iv) Without Both: We restrict our learning process to the first stage in Section 4 with PPO algorithm
and evaluate the policies without goal estimation.

5.1 Results in Simulation

We conduct an analysis of our method with three baselines in the simulation environment. Figure
4 shows the training curve of four methods. Table 1 presents the success rates for two categories:
Known Objects and Novel Objects. Our findings can be summarized as follows.

First, for the test on known objects experiment, we observe that the baseline (Without Both) outper-
forms the other three methods, including ours. One possible reason for this is that the policy without
multi-agent coordination has access to full observations of both hands and the arm system, as well
as the ground-truth object position. As a result, the policy can easily overfit to a specific point and
successfully solve the task. However, it is important to note that this baseline policy may have lower
generalization capabilities when it comes to novel objects or uncertain parameters. In the real world,
we encounter noise and uncertainties, and obtaining the ground-truth object position is not feasible.
Therefore, the policy with full observations demonstrates lower transferability from simulation to the
real world, as we validate in Section 5.3.

Secondly, in the novel objects experiment, although all methods show a significant drop in perfor-
mance, our method outperforms the baselines. The utilization of multi-agent reinforcement learning
and goal estimation proves beneficial for accomplishing the throwing and catching task. Both the

7



Settings Ball Cylinder Triangle
HR SR HR SR HR SR

Open-Loop 0.60± 0.12 0.13± 0.12 0.47± 0.12 0.13± 0.12 0.27± 0.12 0.07± 0.12
w/o Multi-Agent 0.73± 0.31 0.40± 0.20 0.53± 0.31 0.20± 0.00 0.47± 0.12 0.20± 0.20
w/o Goal Estimation 0.60± 0.20 0.33± 0.23 0.67± 0.31 0.40± 0.34 0.40± 0.20 0.13± 0.23
w/o Both 0.47± 0.13 0.12± 0.12 0.40± 0.20 0.07± 0.12 0.20± 0.20 0.00± 0.00
Ours 0.93 ± 0.12 0.60 ± 0.20 0.80 ± 0.20 0.53 ± 0.12 0.86 ± 0.12 0.33 ± 0.12

Table 2: Ablation Study in Real-World: Performance of throwing and catching task on 3 different unknown
objects in real robot platform. Objects are made of sandbags with the same mass but different shapes. The results
are averaged on 3 seeds with 5 trails for each. The two terms stand for:(i) Hit Rate(HR): This metric is defined
as the proportion of objects that successfully hit the hand palm of catcher. A better policy and goal estimator
will lead to a higher Hit Rate. (ii) Success Rate(SR): It is calculated as the ratio of successful throws and catches
to the total attempts. A better policy will lead to a higher Success Rate.

thrower and catcher agents receive observations from their respective perspectives, enabling them
to perform their tasks cohesively. Furthermore, goal estimation assists the catcher in predicting the
landing point of the objects based on historical positions. This feature helps mitigate the impact of
unpredictable parameters during the manipulation process, such as friction, unexpected collisions,
and other dynamic factors.

5.2 Why MAPPO Outperform PPO in the Dynamic Handover?
Commonly, the single-agent setting should be strictly easier than the multi-agent setting, since both
thrower and catcher have full access to the states of both sides. However, our result suggests otherwise
which seems rather counter-intuitive. So why MAPPO outperform PPO in our system? We agree
that single-agent RL might be easier than the multi-agent RL in training, so the performance of the
single-agent RL and the multi-agent RL in the trained object are similar. But as single-agent RL can
access more information, they are more likely to overfit into the environment, so they will be harder
to generalize than multi-agent, which is why multi-agent performs well in novel objects in simulation
and the sim2real transfer.

5.3 Results in Real World
We perform sim-to-real experiments to assess the performance of our method and two baselines
on a real-robot platform. As depicted in Figure 2, we deploy multi-agent reinforcement learning
policies on the real robot agents, with both agents controlled by the same host. The task execution
sequence is visualized on the second and third columns in Figure 1. Further implementation details
and communication methods can be found in the Appendix.

The results of our real-world evaluation are presented in Table 2. We successfully transfer our multi-
agent reinforcement policy to the real robot system with a reasonable success rate after performing
system identification to align the PD controllers between the simulation and the real robot. Our
method outperforms the baseline methods, indicating the effectiveness of multi-agent reinforcement
learning (MARL) and goal estimation in real robot experiments. These components provide benefits in
dealing with various unpredictable factors encountered in the real-world setting, leading to improved
performance and robustness. We also notice that the success rates achieved in real-world experiments
are lower than the hit rate. This is primarily attributed to occasional challenges encountered during
the grasping phase of the catcher. In some cases, the catcher may fail to firmly grasp the object before
it bounces back, leading to the object slipping off the robot’s hand.

6 Conclusion and Limitation
Limitation In our study, we acknowledge that the use of objects with low restitution may not fully
capture the challenges faced in real-life scenarios where objects often have higher restitution. Objects
with higher restitution tend to bounce back upon impact, making it more difficult to catch them
smoothly without collisions.

Conclusion We present Dynamic Handover, a system capable of throwing and catching with bimanual
hands. Through the use of multi-agent reinforcement learning and goal estimation, our system
demonstrates the ability to achieve successful throw and catch in both simulation and real-world
environments. We find that the goal estimation aids in mitigating the effects of unpredictable
parameters and enhances the overall stability to bridge the large dynamics gap between sim and real.

8



Acknowledgment. This work was supported, in part, by the Qualcomm Innovation Fellowship,
and the Technology Innovation Program (20018112, Development of autonomous manipulation and
gripping technology using imitation learning based on visual and tactile sensing) funded by the
Ministry of Trade, Industry & Energy (MOTIE), Korea.

References
[1] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar. Dexterous manipulation with deep

reinforcement learning: Efficient, general, and low-cost. In 2019 International Conference on
Robotics and Automation (ICRA), pages 3651–3657. IEEE, 2019.

[2] T. Chen, J. Xu, and P. Agrawal. A system for general in-hand object re-orientation. In
Conference on Robot Learning, pages 297–307. PMLR, 2022.

[3] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. The Interna-
tional Journal of Robotics Research, 39(1):3–20, 2020.

[4] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson. Learning to communicate with deep
multi-agent reinforcement learning. Advances in neural information processing systems, 29,
2016.

[5] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual multi-agent
policy gradients. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

[6] H. He, J. Boyd-Graber, K. Kwok, and H. Daumé III. Opponent modeling in deep reinforcement
learning. In International conference on machine learning, pages 1804–1813. PMLR, 2016.

[7] T. Wang, H. Dong, V. Lesser, and C. Zhang. Roma: Multi-agent reinforcement learning with
emergent roles. arXiv preprint arXiv:2003.08039, 2020.

[8] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi. Qtran: Learning to factorize with
transformation for cooperative multi-agent reinforcement learning. In International conference
on machine learning, pages 5887–5896. PMLR, 2019.

[9] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness
of ppo in cooperative multi-agent games. Advances in Neural Information Processing Systems,
35:24611–24624, 2022.

[10] A. Malus, D. Kozjek, et al. Real-time order dispatching for a fleet of autonomous mobile robots
using multi-agent reinforcement learning. CIRP annals, 69(1):397–400, 2020.

[11] Y. Jin, Y. Zhang, J. Yuan, and X. Zhang. Efficient multi-agent cooperative navigation in
unknown environments with interlaced deep reinforcement learning. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
2897–2901. IEEE, 2019.

[12] Z. Xia, J. Du, J. Wang, C. Jiang, Y. Ren, G. Li, and Z. Han. Multi-agent reinforcement learning
aided intelligent uav swarm for target tracking. IEEE Transactions on Vehicular Technology, 71
(1):931–945, 2021.

[13] Y.-J. Chen, D.-K. Chang, and C. Zhang. Autonomous tracking using a swarm of uavs: A
constrained multi-agent reinforcement learning approach. IEEE Transactions on Vehicular
Technology, 69(11):13702–13717, 2020.

[14] G. Ding, J. J. Koh, K. Merckaert, B. Vanderborght, M. M. Nicotra, C. Heckman, A. Roncone,
and L. Chen. Distributed reinforcement learning for cooperative multi-robot object manipulation.
arXiv preprint arXiv:2003.09540, 2020.

9



[15] O. Nachum, M. Ahn, H. Ponte, S. Gu, and V. Kumar. Multi-agent manipulation via locomotion
using hierarchical sim2real. arXiv preprint arXiv:1908.05224, 2019.

[16] M. Zhang, P. Jian, Y. Wu, H. Xu, and X. Wang. Disentangled attention as intrinsic regularization
for bimanual multi-object manipulation. CoRR, 2021.

[17] Y. Li, C. Pan, H. Xu, X. Wang, and Y. Wu. Efficient bimanual handover and rearrangement via
symmetry-aware actor-critic learning. 2023 IEEE International Conference on Robotics and
Automation (ICRA), 2023.

[18] M. T. Mason and K. Lynch. Dynamic manipulation. In Proceedings of (IROS) IEEE/RSJ
International Conference on Intelligent Robots and Systems, volume 1, pages 152 – 159, July
1993.

[19] Y. Gai, Y. Kobayashi, Y. Hoshino, and T. Emaru. Motion control of a ball throwing robot with a
flexible robotic arm. World Academy of Science, Engineering and Technology, International
Journal of Computer, Electrical, Automation, Control and Information Engineering, 7:937–945,
2013.

[20] T. Senoo, A. Namiki, and M. Ishikawa. High-speed throwing motion based on kinetic chain
approach. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
3206–3211, 2008.

[21] J. Kober, M. Glisson, and M. Mistry. Playing catch and juggling with a humanoid robot. In
2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages
875–881. IEEE, 2012.

[22] J. Kober, E. Öztop, and J. Peters. Reinforcement learning to adjust robot movements to new
situations. In International Joint Conference on Artificial Intelligence, 2010.

[23] A. Ghadirzadeh, A. Maki, D. Kragic, and M. Björkman. Deep predictive policy training using
reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2351–2358. IEEE, 2017.

[24] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser. Tossingbot: Learning to throw
arbitrary objects with residual physics. 2019.

[25] C. Chi, B. Burchfiel, E. Cousineau, S. Feng, and S. Song. Iterative residual policy: for goal-
conditioned dynamic manipulation of deformable objects. arXiv preprint arXiv:2203.00663,
2022.

[26] C. Wang, S. Wang, B. Romero, F. Veiga, and E. H. Adelson. Swingbot: Learning physical
features from in-hand tactile exploration for dynamic swing-up manipulation. In IROS, pages
5633–5640. IEEE, 2020.

[27] A. Petrenko, A. Allshire, G. State, A. Handa, and V. Makoviychuk. Dexpbt: Scaling up
dexterous manipulation for hand-arm systems with population based training. In Robotics:
Science and Systems, 2023.

[28] J. Ye, J. Wang, B. Huang, Y. Qin, and X. Wang. Learning continuous grasping function with a
dexterous hand from human demonstrations. IEEE Robotics and Automation Letters, 2023.

[29] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp synthesis—a survey. IEEE
Transactions on robotics, 30(2):289–309, 2013.

[30] A. Gupta, C. Eppner, S. Levine, and P. Abbeel. Learning dexterous manipulation for a soft
robotic hand from human demonstrations. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3786–3793. IEEE, 2016.

10



[31] M. Ciocarlie, C. Goldfeder, and P. Allen. Dimensionality reduction for hand-independent
dexterous robotic grasping. In 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3270–3275. IEEE, 2007.

[32] Y. Qin, H. Su, and X. Wang. From one hand to multiple hands: Imitation learning for dexterous
manipulation from single-camera teleoperation. IEEE Robotics and Automation Letters, 7(4):
10873–10881, 2022.

[33] Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang. Rotating without seeing: Towards in-hand
dexterity through touch. arXiv preprint arXiv:2303.10880, 2023.

[34] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,
K. Van Wyk, A. Zhurkevich, B. Sundaralingam, Y. Narang, J.-F. Lafleche, D. Fox, and G. State.
Dextreme: Transfer of agile in-hand manipulation from simulation to reality. arXiv, 2022.

[35] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik. In-Hand Object Rotation via Rapid Motor
Adaptation. In Conference on Robot Learning (CoRL), 2022.

[36] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[37] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal. Visual dexterity: In-hand
dexterous manipulation from depth. arXiv preprint arXiv:2211.11744, 2022.

[38] Y. Bai, W. Yu, and C. K. Liu. Dexterous manipulation of cloth. In Computer Graphics Forum,
volume 35, pages 523–532. Wiley Online Library, 2016.

[39] F. Ficuciello, A. Migliozzi, E. Coevoet, A. Petit, and C. Duriez. Fem-based deformation control
for dexterous manipulation of 3d soft objects. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4007–4013. IEEE, 2018.

[40] S. Li, Z. Huang, T. Chen, T. Du, H. Su, J. B. Tenenbaum, and C. Gan. Dexdeform: Dexterous
deformable object manipulation with human demonstrations and differentiable physics. arXiv
preprint arXiv:2304.03223, 2023.

[41] Y. C. Hou, K. S. M. Sahari, and D. N. T. How. A review on modeling of flexible deformable
object for dexterous robotic manipulation. International Journal of Advanced Robotic Systems,
16(3):1729881419848894, 2019.

[42] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang. Dexpoint: Generalizable point cloud rein-
forcement learning for sim-to-real dexterous manipulation. In Conference on Robot Learning,
pages 594–605. PMLR, 2023.

[43] N. Vahrenkamp, M. Przybylski, T. Asfour, and R. Dillmann. Bimanual grasp planning. In 2011
11th IEEE-RAS International Conference on Humanoid Robots, pages 493–499. IEEE, 2011.

[44] R. Zollner, T. Asfour, and R. Dillmann. Programming by demonstration: dual-arm manipulation
tasks for humanoid robots. In 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 1, pages 479–484. IEEE, 2004.

[45] N. Xi, T.-J. Tarn, and A. K. Bejczy. Intelligent planning and control for multirobot coordination:
An event-based approach. IEEE transactions on robotics and automation, 12(3):439–452, 1996.

[46] R. Chitnis, S. Tulsiani, S. Gupta, and A. Gupta. Efficient bimanual manipulation using learned
task schemas. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 1149–1155. IEEE, 2020.

[47] F. Amadio, A. Colomé, and C. Torras. Exploiting symmetries in reinforcement learning of
bimanual robotic tasks. IEEE Robotics and Automation Letters, 4(2):1838–1845, 2019.

11



[48] S. Kataoka, S. K. S. Ghasemipour, D. Freeman, and I. Mordatch. Bi-manual manipulation and
attachment via sim-to-real reinforcement learning. arXiv preprint arXiv:2203.08277, 2022.

[49] A. M. Castro, F. N. Permenter, and X. Han. An unconstrained convex formulation of compliant
contact. IEEE Transactions on Robotics, 2022.

[50] Y. Chen, Y. Yang, T. Wu, S. Wang, X. Feng, J. Jiang, Z. Lu, S. M. McAleer, H. Dong, and S.-C.
Zhu. Towards human-level bimanual dexterous manipulation with reinforcement learning. In
Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2022. URL https://openreview.net/forum?id=D29JbExncTP.

[51] K. Zakka, L. Smith, N. Gileadi, T. Howell, X. B. Peng, S. Singh, Y. Tassa, P. Florence, A. Zeng,
and P. Abbeel. RoboPianist: A Benchmark for High-Dimensional Robot Control, 2023. URL
https://github.com/google-research/robopianist.

[52] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

12

https://openreview.net/forum?id=D29JbExncTP
https://github.com/google-research/robopianist


A Detailed Implementation of Real Robot System

Bimanual Hands System. For our system, we have developed a ROS-based pipeline that operates at
a control frequency of 20Hz. This pipeline serves as the foundation for controlling our setup, enabling
efficient communication and coordination between the different components. In our configuration, the
Arm-Hand subsystems are controlled by a single policy utilizing multiple agents. This unified policy
governs the actions of both subsystems, promoting synchronized and collaborative behavior in our
setup. To achieve this, we control the motion of the robotic arms through Modbus TCP (Transmission
Control Protocol) using an AC/DC Control Box. The control boxes of the two robotic arms are
connected to a router via Ethernet cables, and the router is then connected to the host computer.
Additionally, the two robot hands are directly connected to the same computer using RS-485 serial
communication.

Object Tracking. Real-time object tracking is performed with an Intel RealSense D435 stereo
camera. Since the object has a high color contrast from its background, we first use a simple color
detector on the RGB image to find the pixel location of the object. The color range for detecting a
blue object is constrained between [80, 200, 0] and [120, 255, 0] in HSV color space. Next, the 3D
position of that pixel is obtained from querying the corresponding depth value on the depth image,
where post-processing filters including disparity, spatial and temporal, are applied to reduce depth
noise. Finally, we get the 3D object position in robot frame from image frame with calibrated camera
extrinsics parameters.

Domain Randomization Isaac Gym offers several domain randomization functions for reinforcement
learning training. We apply randomization to the task, as indicated in Table. 3 for each environment.
We generate new randomizations every 1000 simulation steps.

Parameter Type Distribution Initial Range

Robot
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.7, 1.3]
Joint Lower Limit Scaling loguniform [0.0, 0.01]
Joint Upper Limit Scaling loguniform [0.0, 0.01]

Joint Stiffness Scaling loguniform [0.0, 0.01]
Joint Damping Scaling loguniform [0.0, 0.01]

Object
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.5, 1.5]
Scale Scaling uniform [0.95, 1.05]

Observation
Obs Correlated. Noise Additive gaussian [0.0, 0.001]

Obs Uncorrelated. Noise Additive gaussian [0.0, 0.002]
Action

Action Correlated Noise Additive gaussian [0.0, 0.015]
Action Uncorrelated Noise Additive gaussian [0.0, 0.05]

Environment
Gravity Additive normal [0, 0.4]

Table 3: Domain randomization parameters.

B Sim2Real Transfer

System Identification. To achieve a successful sim-to-real transfer, we utilize system identification
techniques to align the behavior of the PD (Proportional-Derivative) controller of the arm and hand
in simulation with that in the real world. This involves tuning the PD coefficients of the controllers
to ensure that their responses to impulse and sinusoidal inputs are aligned. This step is crucial in
ensuring that the control actions generated in simulation can be effectively applied to the real robot
setup, enabling a reliable sim-to-real transfer of our system.

13



Figure 6: Ablation study Left: policy with rod in Training. Right: policy without Using rod in
Training.

C Why is There a rod Used in Training Objects?

We find this leads to more robust policy in the training. Specifically, we observed that the simultaneous
movement of all fingers when throwing a ball led to more robust results, whereas when using
balls/square objects, policy often used only a few fingers. Therefore, we designed the shape of the rod
in training. If the policy wants to throw the rod stably, it must learn to use all of its fingers in throwing,
so it can make our policy more robust. We conducted new ablation experiment, the results of which
are presented in Table.4. In terms of novel objects’ success rate, we observed that the policy’s success
rate without using a rod is lower compared to when the rod is used. We have included videos on
our website that showcases the hand’s motion when training with and without the rod, as shown in
Figure. 6. The video demonstrates that when the rod is excluded from training, the hand fails to
effectively use all of its fingers during throwing, leading to a reduction in generalization ability.

Ablation Known obj Novel obj
Ours (w/o rod) 0.94±0.04 0.26±0.06

Ours 0.95±0.03 0.37±0.04

Table 4: Ablation study in training w/w.o. rod

D How Pre-throw Conditions Impact Throwing Performance?

Figure 7: Throwing Stability Test of different initial
settings: (a) simply placing the object on an open robot
hand, (b) gripping the object with the robot hand, re-
sembling a parallel gripper, and (c) firmly grasping the
object with the robot hand.

In this experiment, we examine the repeatability
of the thrower. Our intuition is that a thrower
policy capable of generating consistent object
trajectories often results in a higher success rate
for the catcher. We find that the robots’ and ob-
jects’ initial positions have a significant impact
on the stability of the throwing motion. To ad-
dress this, we investigate three different initial
conditions (depicted in Figure 7) in real-world.
For each initial position, we train a MARL pol-
icy and conduct 10 trials with the thrower robot.
We compute the variance of the landing point
on the table to evaluate the repeatability under
different initial conditions. A smaller variance
indicates better repeatability and stability. The
results are summarized in Table 5. We observe
that condition (c) demonstrates the smallest vari-
ance and enables more stable throws towards
the target compared to conditions (a) and (b).
This suggests that an initial firm grasp is advan-
tageous for subsequent throwing behavior.

14



Settings Pose A Pose B Pose C
Std(x) 0.051 0.072 0.024
Std(y) 0.087 0.048 0.043

Table 5: Comparison for Pre-throw Conditions: We calculate the standard deviation of landing points on the
table in the x and y directions, based on 10 runs for each pose. The units are in meters.

E Hyperparameters of the RL algorithms

Table. 6 and Table.7 are the hyperparameters of the RL algorithms.

Hyperparameters Throw and Catch
Num mini-batches 1
Num opt-epochs 5

Num episode-length 8
Hidden size [1024, 1024, 512]
Use popart True

Use value norm True
Use proper time limits False

Use huber loss True
Huber delta 10
Clip range 0.2

Max grad norm 10
Learning rate 5.e-4

Opt-eps 5.e-4
Discount (γ) 0.96

GAE lambda (λ) 0.95
Std x coef 1
Std y coef 0.5
Ent-coef 0

Table 6: Hyperparameters of MAPPO.

Hyperparameters Throw and Catch
Num mini-batches 4
Num opt-epochs 5

Num episode-length 8
Hidden size [1024, 1024, 512]
Clip range 0.2

Max grad norm 1
Learning rate 3.e-4
Discount (γ) 0.96

GAE lambda (λ) 0.95
Init noise std 0.8

Desired kl 0.016
Ent-coef 0

Table 7: Hyperparameters of PPO.

F Reward design

The reward of our system r can be computed as r = rdis + rlinvel + rtorque. In the design of our
reward, rdis is the reward that mainly responds to throwing objects to the target position. rlinvel is a
reward that encourages throwers to release the ball from hand. rtorque is a penalty item for robots
that torque is too big. In our reward function, if rdis is missing, the object will not be thrown to the
exact position, but will only be thrown forward vigorously. Without rlinvel, it would often fall into a
sub-optimal where the thrower holds the ball in its hand and doesn’t release. rtorque is a common
reward term that allows robots to avoid jitter and large dangerous movements.

G Perturbation Test in Simulation

We have conducted experiments such as perturbation for the test set and show the video results in
simulation (see our project website, under the Perturbation Test section). We add three environmental
conditions, e.g., wind flow opposing the thrower, along the thrower, orthogonal to the throw, as we
show in our website, as shown in Figure. 8. We show the strength of the wind in our videos (1st
column under Perturbation Test. Our policy can still perform well in these scenarios, indicating that
we have learned a robust policy.

15



Figure 8: Perturbation test in simulation

16


	Introduction
	Related Work
	System Setup
	Learning Bimanual Dexterous Hands Policy
	Stage1: Multi-Agent Reinforcement Learning.
	Stage2: Goal Estimator Learning.
	Stage3: End2End Joint Learning.

	Experiments
	Results in Simulation
	Why MAPPO Outperform PPO in the Dynamic Handover?
	Results in Real World

	Conclusion and Limitation
	Detailed Implementation of Real Robot System
	Sim2Real Transfer
	Why is There a rod Used in Training Objects?
	How Pre-throw Conditions Impact Throwing Performance?
	Hyperparameters of the RL algorithms
	Reward design
	Perturbation Test in Simulation

