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Abstract—This paper proposes a novel highly scalable
sampling-based planning algorithm for multi-robot active in-
formation acquisition tasks in complex environments. Active
information gathering scenarios include target localization and
tracking, active SLAM, surveillance, environmental monitoring
and others. The objective is to compute control policies for
sensing robots which minimize the accumulated uncertainty of
a dynamic hidden state over an a priori unknown horizon. To
address this problem, we propose a new sampling-based algo-
rithm that simultaneously explores both the robot motion space
and the reachable information space. Unlike relevant sampling-
based approaches, we show that the proposed algorithm is prob-
abilistically complete, asymptotically optimal and is supported
by convergence rate bounds. Moreover, we demonstrate that by
introducing bias in the sampling process towards informative
areas, the proposed method can quickly compute sensor policies
that achieve desired levels of uncertainty in large-scale estimation
tasks that may involve large sensor teams, workspaces, and
dimensions of the hidden state. We provide extensive simulation
results that corroborate the theoretical analysis and show that
the proposed algorithm can address large-scale estimation tasks
which were previously infeasible.

I. INTRODUCTION

The Active Information Acquisition (AIA) problem has
recently received considerable attention due to a wide range
of applications including target tracking [12], environmental
monitoring [19], active simultaneous localization and mapping
(SLAM) [5], active source seeking [3], and search and rescue
missions [15]. In each of these scenarios, robots are deployed
to collect information about a physical phenomenon of inter-
est; see e.g., Figure 1.

In this paper, we consider the problem of designing control
policies for a team of mobile sensors residing in complex
environments which minimize the accumulated uncertainty of
a dynamic hidden state over an a priori unknown horizon
while satisfying user-specified accuracy thresholds. First, we
formulate this AIA problem as a stochastic optimal control
problem which generates an optimal terminal horizon and
a sequence of optimal control policies given measurements
to be collected in the future. Under Gaussian and linearity
assumptions we can convert the problem into a deterministic
optimal control problem, for which optimal control policies
can be designed offline. To design optimal sensor policies, we
propose a novel sampling-based approach that simultaneously

Fig. 1. Target localization and tracking scenario: Two robots with limited
field-of-view (blue ellipses) navigate an environment with obstacles to localize
and track six targets of interest.

explores both the robot motion space and the information
space reachable by the sensors. Next, we show that the pro-
posed algorithm is probabilistically complete, asymptotically
optimal, and convergences exponentially fast to the optimal
solution. Moreover, we provide simulation results for a target
localization and tracking scenario which demonstrate that
by introducing bias into the sampling process, the proposed
algorithm can quickly design paths that achieve desired levels
of uncertainty in AIA tasks that involve large teams of robots,
workspaces, and dimensions of the hidden state, which is
impossible using relevant methods. Finally, we show that the
proposed algorithm can also be used to design sensor policies
when the linearity assumptions are relaxed.

Literature Review: Relevant approaches to accomplish
AIA tasks are typically divided into greedy and nonmyopic.
Greedy approaches rely on computing controllers that incur the
maximum immediate decrease of an uncertainty measure as,
e.g., in [20, 9, 8, 6, 21], while they are often accompanied with
suboptimality guarantees due to submodular functions that
quantify the informativeness of paths [7]. Although myopic
approaches are usually preferred in practice due to their com-
putational efficiency, they often get trapped in local optima. To
mitigate the latter issue, nonmyopic search-based approaches
have been proposed that sacrifice computational efficiency in
order to design optimal paths. For instance, optimal controllers



can be designed by exhaustively searching the physical and
the information space [17]. More computationally efficient
but suboptimal controllers have also been proposed that rely
on pruning the exploration process [24, 2, 23]. However,
these approaches become computationally intractable as the
planning horizon or the number of robots increases. Nonmy-
opic sampling-based approaches have also been proposed due
to their ability to find feasible solutions very fast, see e.g.,
[18, 11, 14, 16]. Common in these works is that they lack
formal guarantees in terms of completeness and/or optimality.
Moreover, as the number of robots or the dimensions of
the hidden states increase, the state-space that needs to be
explored grows exponentially and, as result, sampling-based
approaches also fail to compute sensor policies because of
either excessive runtime or memory requirements. To the best
of our knowledge, we propose the first AIA algorithm that
is computationally efficient, highly scalable, and supported by
optimality and convergence rate guarantees.

Contributions: The contribution of this paper can be sum-
marized as follows. First, we propose a nonmyopic sampling-
based approach for information-gathering tasks that is highly
scalable, i.e., it can quickly design control policies which
achieve desired levels of uncertainty in AIA tasks that involve
large sensor teams, dimensions of the hidden state, and large
workspaces. Second, we propose the first sampling-based AIA
approach that is probabilistically complete and asymptotically
optimal, and converges exponentially fast to the optimal solu-
tion. Third, we design the first sampling strategy for sampling-
based AIA methods that biases exploration towards regions
that are expected to be informative. This allows us to address
large-scale estimation tasks. Fourth, we provide extensive
simulation results that show that the proposed method can
efficiently handle large-scale estimation tasks, which is im-
possible using existing methods.

II. PROBLEM DEFINITION

Consider N mobile robots that reside in an environment
Ω ⊂ Rd with obstacles of arbitrary shape located at O ⊂ Ω,
where d is the dimension of the workspace. The dynamics of
the robots are described by pj(t + 1) = fj(pj(t),uj(t)), for
all j ∈ N := {1, . . . , N}, where pj(t) ∈ Ωfree := Ω\O stands
for the state (e.g., position and orientation) of robot j in the
obstacle-free space Ωfree at discrete time t, uj(t) ∈ Uj stands
for a control input in a finite space of admissible controls Uj .
Hereafter, we compactly denote the dynamics of all robots as

p(t+ 1) = f(p(t),u(t)), (1)

where p(t) ∈ ΩN
free, ∀t ≥ 0, and u(t) ∈ U := U1 × · · · × UN .

The task of the robots is to collaboratively estimate a hidden
state governed by the following dynamics:

x(t+ 1) = Ax(t) + w(t), (2)

where x(t) ∈ Rn and w(t) ∈ Rdw denote the hidden state
and the process noise at discrete time t, respectively. We
assume that the process noise w(t) is normally distributed as

w(t) ∼ N (d(t),Q(t)), where Q(t) is the covariance matrix
at time t. For instance, x(t) can model the position of static
or mobile targets [1], the state of spatio-temporal fields [16]
or gas concentration [4].

Moreover, the robots are equipped with sensors to collect
measurements associated with x(t) as per the observation
model: yj(t) = Mj(pj(t))x(t) + vj(t), where yj(t) is the
measurement signal at discrete time t taken by robot j ∈ N .
Also, vj(t) ∼ N (0,Rj(t)) is sensor-state-dependent Gaus-
sian noise with covariance Rj(t). Linear observation models
have been used, e.g., in [4] to estimate a gas concentration
field. Hereafter, we compactly denote the observation models
of all robots as

y(t) = M(p(t))x(t) + v(t), v(t) ∼ N (0,R(t)). (3)

The quality of measurements taken by all robots up to a
time instant t, collected in a vector denoted by y0:t, can
be evaluated using information measures, such as the mutual
information between y0:t and x(t) or the conditional entropy
of x(t) given y0:t. Assuming a Gaussian distribution for
x(t), i.e., x(t) ∼ N (µ(t|y0:t),Σ(t|y0:t)), where µ(t|y0:t)
and Σ(t|y0:t) denote the mean and covariance matrix of
x(t), respectively, after fusing measurements y0:t, alternative
uncertainty measures can also be used such as the trace,
determinant, or maximum eigenvalue of Σ(t|y0:t). Note that
µ(t|y0:t) and Σ(t|y0:t) can be computed using probabilistic
inference methods, e.g., Kalman filter.

Given the initial robot configuration p(0) and the hidden
state x(t) that evolves as per (2), our goal is to select a finite
horizon F ≥ 0 and compute control inputs u(t), for all time
instants t ∈ {0, . . . , F}, that solve the following stochastic
optimal control problem

min
F,u0:F

[
J(F,u0:F ,y0:F ) =

F∑
t=0

det Σ(t|y0:t)

]
(4a)

det Σ(F |y0:F ) ≤ δ, (4b)

p(t) ∈ ΩN
free, (4c)

p(t+ 1) = f(p(t),u(t)), (4d)
x(t+ 1) = Ax(t) + w(t), (4e)
y(t) = M(p(t))x(t) + v(t), (4f)

where the constraints hold for all time instants t ∈ {0, . . . , F}.
In (4a), u0:F stands for the sequence of control inputs applied
from t = 0 until t = F . Also, assuming a Gaussian
distribution for x(t), det Σ(t|y0:t) denotes the determinant of
the covariance matrix of x(t) given the measurements y0:t.
In words, the objective function (4a) captures the cumulative
uncertainty in the estimation of x(t) after fusing information
collected by all robots from t = 0 up to time F . The first
constraint (4b) requires the terminal uncertainty of x(F ) to be
below a user-specified threshold δ; see also Remark 2.1. The
second constraint (4c) requires that the robots should never
collide with obstacles. The last three constraints capture the
robot and hidden state dynamics and the sensor model.



Remark 2.1 (Optimal Control Problem (4)): In (4), any
other optimality metric, not necessarily information-based, can
be used in place of (4a) as long as it is always positive. If non-
positive metrics are selected, e.g., the entropy of x(t), then
(4) is not well-defined, since the optimal terminal horizon F
is infinite. On the other hand, in the first constraint (4b), any
uncertainty measure can be used without any restrictions, e.g.,
scalar functions of the covariance matrix, or mutual informa-
tion. Moreover, note that without the terminal constraint (4b),
the optimal solution of (4) is all robots to stay put, i.e., F = 0.
Additional terminal constraints can be added to (4), such as,
p(F ) ∈ Pgoal ⊆ ΩN

free, to model joint task planning and
estimation scenarios, where, e.g., the robots should eventually
visit a base station to upload an estimate of the hidden state
with user-specified accuracy determined by δ.

The Active Information Acquisition problem in (4) is a
stochastic optimal control problem for which, in general,
closed-loop control policies are optimal. Nevertheless, given
the linear dynamics for the hidden state in (1), and the linear
observation models (3), we can apply the separation principle
presented in [1] to convert (4) to the following deterministic
optimal control problem.

min
F,u0:F

[
J(F,u0:F ) =

F∑
t=0

det Σ(t)

]
(5a)

det Σ(F ) ≤ δ, (5b)

p(t) ∈ ΩN
free, (5c)

p(t+ 1) = f(p(t),u(t)), (5d)
Σ(t+ 1) = ρ(p(t),Σ(t)), (5e)

where ρ(·) stands for the Kalman Filter Ricatti map. Note that
open loop (offline) policies are optimal solutions to (5). The
problem addressed in this paper can be summarized as follows.

Problem 1: (Active Information Acquisition) Given an ini-
tial robot configuration p(0) and a Gaussian prior distribution
N (µ(0),Σ(0)) for the hidden state x(0) that evolves as per
(2), select a horizon F and compute control inputs u(t) for
all time instants t ∈ {0, . . . , F} as per (5).

Finally, throughout the paper we make the following as-
sumption.

Assumption 2.2: The dynamics of the state x(t) in (2), the
observation model (3), and process and measurement noise
covariances Q(t) and R(t) are known.

Note that Assumption 2.2 allows for offline computation of
optimal policies, since the solution to (5) does not depend
on the robot measurements. Nevertheless, in Section VI,
we present numerical experiments where this assumption is
relaxed.

III. SAMPLING-BASED ACTIVE INFORMATION
ACQUISITION

We propose a sampling-based algorithm to solve Problem
1, which is summarized in Algorithm 1. The proposed al-
gorithm relies on incrementally constructing a directed tree
that explores both the information space and the robot motion

Algorithm 1: Sampling-based Active Information Acqui-
sition

Input: (i) maximum number of iterations nmax, (ii) dynamics (1), (2),
observation model (3), (iii) prior Gaussian N (x̂(0),Σ(0)), (iv)
initial robot configuration p(0)

Output: Terminal horizon F , and control inputs u0:F

1 Initialize V = {q(0)}, E = ∅, V1 = {q(0)}, K1 = 1, and Xg = ∅;
for n = 1, . . . , nmax do

2 Sample a subset Vkrand from fV ;
3 Sample a control input unew ∈ U from fU and compute pnew;
4 if pnew ∈ ΩN

free then
5 for qrand(t) = [prand(t),Σrand(t)] ∈ Vkrand do
6 Compute Σnew(t+ 1) = ρ(prand(t),Σrand(t));
7 Construct qnew(t+ 1) = [pnew(t+ 1),Σnew(t+ 1)];
8 Update set of nodes: V = V ∪ {qnew};
9 Update set of edges: E = E ∪ {(qrand,qnew)};

10 Compute cost of new state:
JG(qnew) = JG(qrand) + det Σnew(t+ 1); see (6);

11 if qnew ∈ Vk for some k ∈ {1, . . . ,Kn} then
12 Vk = Vk ∪ {qnew};
13 else
14 Kn = Kn + 1, VKn = {qnew};
15 if qnew satisfies (5b) then
16 Xg = Xg ∪ {qnew};
17 Among all nodes in Xg , find qend(tend) ;
18 F = tend and recover u0:F by computing the path

q0:tend = q(0), . . . ,q(tend);

space. In what follows, we denote the constructed tree by
G = {V, E , JG}, where V is the set of nodes and E ⊆ V × V
denotes the set of edges. The set of nodes V contains states
of the form q(t) = [p(t),Σ(t)].1 The function JG : V → R+

assigns the cost of reaching node q ∈ V from the root of the
tree. The root of the tree, denoted by q(0), is constructed so
that it matches the initial states of the robots p(0) and the
prior covariance Σ(0), i.e., q(0) = [p(0),Σ(0)]. The cost of
the root q(0) is JG(q(0)) = det Σ(0), while the cost of a node
q(t + 1) = [p(t + 1),Σ(t + 1)] ∈ V , given its parent node
q(t) = [p(t),Σ(t)] ∈ V , is computed as

JG(q(t+ 1)) = JG(q(t)) + det Σ(t+ 1). (6)

Observe that by applying (6) recursively, we get that JG(q(t+
1)) = J(t,u0:t+1) which is the objective function in (5).

The tree G is initialized so that V = {q(0)}, E = ∅,
and JG(q(0)) = det Σ(0) [line 1, Alg. 1]. Also, the tree
is built incrementally by adding new states qnew to V and
corresponding edges to E , at every iteration n of Algorithm
1, based on a sampling [lines 2-3, Alg. 1] and extending-the-
tree operation [lines 4-16, Alg. 1]. After taking nmax ≥ 0
samples, where nmax is user-specified, Algorithm 1 terminates
and returns a solution to Problem 1, i.e., a terminal horizon
F and a sequence of control inputs u0:F .

To extract such a solution, we need first to define the set
Xg ⊆ V that collects all states q(t) = [p(t),Σ(t)] ∈ V of
the tree that satisfy det Σ(F ) ≤ δ, which is the constraint
(5b) [lines (15)-(16), Alg. 1]. Then, among all nodes Xg , we
select the node q(t) ∈ Xg , with the smallest cost JG(q(t)),
denoted by q(tend) [line 17, Alg. 1]. Then, the terminal horizon

1Throughout the paper, when it is clear from the context, we drop the
dependence of q(t) on t.



(a) (b)

Fig. 2. Figure 2(a) illustrates the subsets Vk . The colored circles represent the
states q(t) ∈ V of the tree while the root is depicted by a blue square. Nodes
q that share the same robot-configuration are depicted with the same color.
Note that the covariance component of the states/nodes q(t) is not depicted.
As a result, nodes with the same time stamp t and the same robot configuration
but possibly with different covariances Σ(t) overlap in this figure; see, e.g.,
the blue node in the layer ”t = 2”. Figure 2(b) illustrates the incremental
construction of the tree.

is F = tend, and the control inputs u0:F are recovered by
computing the path q0:tend in G that connects q(tend) to the
root q(0), i.e., q0:tend = q(0), . . . ,q(tend) [line 18, Alg. 1].
Note that satisfaction of the constraints (5c)-(5e) is guaranteed
by construction of G; see Section III-A. In what follows, we
describe the core operations of Algorithm 1, ‘sample’ and
‘extend’ that are used to construct the tree G.

A. Incremental Construction of Trees

At every iteration n of Algorithm 1, a new state qnew(t +
1) = [pnew(t + 1),Σnew(t + 1)] is sampled. The construction
of the state qnew(t+ 1) relies on two steps. Specifically, first
we sample a state pnew(t+ 1) [lines 2-3, Alg. 1]; see Section
III-A1. Second, given pnew(t+ 1) we compute the covariance
matrix Σnew(t+ 1), giving rise to qnew(t+ 1) which is added
to the tree structure [line 6, Alg. 1]; see Section III-A2.

1) Sampling Strategy: To construct the state pnew, we first
divide the set of nodes V into a finite number of sets, denoted
by Vk ⊆ V , based on the robot-configuration component of
the stats q ∈ V . Specifically, a Vk collects all states q ∈ V
that share the same robot configuration p; see Figure 2.By
construction of Vk, we get that V = ∪Kn

k=1Vk, where Kn is
the number of subsets Vk at iteration n. Also, notice that
Kn is finite for all iterations n, since the set of admissible
control inputs U is finite, by assumption. At iteration n = 1
of Algorithm 1, it holds that K1 = 1, V1 = V [line 1, Alg. 1].

Second, given the sets Vk, we first sample from a given
discrete distribution fV(k|V) : {1, . . . ,Kn} → [0, 1] an index
k ∈ {1, . . . ,Kn} that points to the set Vk [line 2, Alg. 1]. The
density function fV(k|V) defines the probability of selecting
the set Vk at iteration n of Algorithm 1 given the set V . Any
density function fV can be used to draw samples krand as long
as it satisfies the following assumption.

Assumption 3.1 (Probability density function fV ): (i) The
probability density function fV(k|V) : {1, . . . ,Kn} → [0, 1]
satisfies fV(k|V) ≥ ε, ∀ k ∈ {1, . . . ,Kn} and for all n ≥ 0,
for some ε > 0 that remains constant across all iterations n.
(ii) Independent samples krand can be drawn from fV .

Next, given the set Vkrand sampled from fV and the corre-
sponding robot state prand, we sample a control input unew ∈ U
from a discrete distribution fU (u) : U → [0, 1] [line 3, Alg.
1]. Given a control input unew sampled from fU , we construct
the state pnew as pnew = f(prand,unew) [line 3, Alg. 1]. Any
density function fU can be used to draw samples unew as long
as it satisfies the following assumption.

Assumption 3.2 (Probability density function fU ): (i) The
distribution fU (u) satisfies fU (u) ≥ ζ, for all u ∈ U , for
some ζ > 0 that remains constant across all iterations n. (ii)
Independent samples unew can be drawn from the probability
density function fU .

Remark 3.3 (Density functions fV and fU ): Note that As-
sumptions 3.1(i) and 3.2(i) also imply that the density func-
tions fV and fU are bounded away from zero on {1, . . . ,Kn}
and U , respectively. Also, observe that Assumptions 3.1 and
3.2 are very flexible, since they also allow fV and fU to change
with iterations n of Algorithm 1, as the tree grows.

Remark 3.4 (Sampling Strategy): An example of a distribu-
tion fV that satisfies Assumption 3.1 is the discrete uniform
distribution fV(k|V) = 1

k , for all k ∈ {1, . . . ,Kn}. Observe
that the uniform function trivially satisfies Assumption 3.1(ii).
Also, observe that Assumption 3.1(i) is also satisfied, since
there exists an ε > 0 that satisfies Assumption 3.1(i), which is
ε = 1

|R| , where R is a set that collects all robot configurations
p that can be reached by the initial state p(0), at some t ≥ 0.
Note that R is a finite set, since the set U of admissible
control inputs is finite, by assumption. Similarly, uniform
density functions fU satisfy Assumption 3.2. Note that any
functions fV and fU can be employed as long as they satisfy
Assumptions 3.1 and 3.2. Nevertheless, the selection of fV and
fU affects the performance of Algorithm 1; see Theorem 4.3.
In Section V, we design (nonuniform) density functions fV and
fU for a target tracking application that bias the exploration
towards informative regions in ΩN

free.
2) Extending the tree: If the configuration pnew, constructed

as in Section III-A1, does not belong to the obstacle-free space,
then the current sample pnew is rejected and the sampling
process is repeated [line 4, Alg. 1]. Otherwise, the tree is ex-
tended towards states qnew that are constructed as follows; see
also Figure 2(b). Given a state qrand(t) = [prand(t),Σrand(t)] ∈
Vkrand , we construct a state qnew by appending to pnew(t+ 1),
the covariance matrix Σnew(t+ 1) computed as Σnew(t+ 1) =
ρ(prand(t),Σrand(t)), where recall that ρ(·) is the Kalman filter
Ricatti map [lines 6-7, Alg. 1]. Next, we update the set of
nodes and edges of the tree as V = V ∪ {qnew(t + 1)} and
E = E ∪{(qrand(t),qnew(t+ 1))}, respectively [lines 8-9, Alg.
1]. The cost of the new node qnew(t+1) is computed as in (6),
i.e., JG(qnew(t+1)) = JG(qrand(t))+det Σnew(t+1) [line 10,
Alg. 1]. Finally, the sets Vk are updated, so that if there already
exists a subset Vk associated with the configuration pnew, then



Vk = Vk ∪{qnew(t+ 1)}. Otherwise, a new set Vk is created,
i.e., Kn = Kn + 1 and VKn

= {qnew} [lines 11-14, Alg. 1].
This process is repeated for all states qrand(t) ∈ Vkrand [line 5,
Alg. 1]. Recall that the states in Vkrand share the same robot
configuration prand but they are possibly paired with different
time stamps t and covariance matrices Σ(t); see Figure 2.

IV. COMPLETENESS, OPTIMALITY & CONVERGENCE

In this section, we examine, the correctness, optimality, and
convergence rate of Algorithm 1.

Theorem 4.1 (Probabilistic Completeness): If there exists
a solution to Problem 1, then Algorithm 1 is probabilisti-
cally complete, i.e., it will find with probability 1 a path
q0:F , defined as a sequence of states in V , i.e., q0:F =
q(0),q(1),q(2), . . . ,q(F ), that solves Problem 1, where
q(f) ∈ V , for all f ∈ {0, . . . , F}.

Theorem 4.2 (Asymptotic Optimality): Assume that there
exists an optimal solution to Problem 1. Then, Algorithm
1 is asymptotically optimal, i.e., the optimal path q∗0:F =
q(0),q(1),q(2), . . . ,q(F ), will be found with probability 1,
as n→∞. In other words, the path generated by Algorithm 1
satisfies P ({limn→∞ J(F,u0:F ) = J∗}) = 1, where J is the
objective function of (5) and J∗ is the optimal cost.2

Theorem 4.3 (Convergence rate bounds): Let q∗0:F denote
the optimal solution to (5). Then, there exist parameters
αn(q∗0:F ) ∈ (0, 1], which depend on the selected density
functions fV and fU , for every iteration n of Algorithm 1,
such that

1 ≥ P(An(q∗0:F )) ≥ 1− e−
∑n
n=1 αn(q∗0:F )

2 n+F , (7)

if n > F . In (7), An(q∗0:F ) denotes the event that Algorithm
1 constructs the path q∗0:F within n iterations.

Remark 4.4 (Convergence rate): Observe in (7) that
limn→∞ P(An(q∗0:F )) = 1. This means that if Problem 1
has an optimal solution, then Algorithm 1 will find it with
probability 1 as nmax →∞, as expected due to Theorem 4.2.

V. MULTI-ROBOT MULTI-TARGET TRACKING

In this section, we consider an application to target localiza-
tion and tracking for Algorithm 1. In this scenario, the hidden
state x(t) is created by stacking the positions of all targets at
time t, i.e., x(t) = [xT

1 (t),xT
2 (t), . . . ,xT

M (t)]T , where xi(t)
is the position of target i ∈ M := {1, . . . ,M} at time t and
M > 0 is the number of targets. We require the constraint
(5b) to hold for all states xi(F ), for some δi. As discussed
in Section III, any density functions fV and fU that satisfy
Assumptions 3.1 and 3.2 can be employed to generate states
qnew(t) in Algorithm 1. In what follows, we design density
functions that allow us to address large-scale estimation tasks
that involve large teams of robots and targets. The main idea
is to build fV and fU so that the tree is biased to explore
regions of Ωfree where targets are predicted to be.

2Note that the horizon F and u0:F returned by Algorithm 1 depend on n.
For simplicity of notation, we drop this dependence.

A. Density Function fV
Let L(q) denote the length (number of hops) of the path

that connects the node q ∈ V to the root q(0) of the tree. Let
also Lmax denote the maximum L(q) among all nodes q ∈ V ,
i.e., Lmax = maxq∈V L(q). Hereafter, we denote by Lmax the
set that collects all nodes q ∈ V that satisfy L(q) = Lmax,
i.e., Lmax = {q ∈ V | L(q) = Lmax}. Given the set Lmax, we
construct the density function fV so that it is biased to select
subsets Vk ⊆ V that contain at least one node q ∈ V that
belongs to Lmax. Specifically, fV(k|V) is defined as follows

fV(k|V) =

{
pV

1
|Kmax| , if k ∈ Kmax

(1− pV) 1
|V\Kmax| , otherwise, (8)

where (i) Kmax is a set that collects the indices k of the subsets
Vk that satisfy Vk ∩ Lmax 6= ∅, and (ii) pV ∈ (0.5, 1) stands
for the probability of selecting any subset Vk that satisfies
Vk ∩Lmax 6= ∅. Note that pV can change with iterations n but
it should always satisfy pV ∈ (0.5, 1) to ensure that subsets
Vk with Vk ∩ Lmax 6= ∅ are selected more often.

B. Density Function fU
The density function fU is designed so that control inputs

uj that drive robot j towards regions that are predicted to
be informative are selected more often. Specifically, given a
state qrand(t) ∈ Vkrand , where krand is sampled from fV(k|V),
we design fU (u|qrand(t)) as follows. The construction of
fU (u|qrand(t)) presumes that targets are assigned to each
robot, when the robots are in state qrand(t); the target as-
signment process is described in Section V-C. Given the
assigned targets, fU is designed so that control inputs uj

that minimize the geodesic distance (see e.g., [13]) between
the next robot position pj(t + 1) = fj(pj,rand(t),uj) and the
predicted position of target j, denoted by x̂i(t+1), are selected
more often. Note that the predicted position x̂i(t + 1) can
be computed using, e.g., the Kalman filter prediction step.
Specifically, fU is defined as fU (u|qrand(t)) =

∏
j∈N f

j
U (uj),

where f jU (uj) is constructed as follows.

f jU (uj) =

{
pU , if (uj = u∗j ) ∧ (dij > Rj)
(1− pU ) 1

|Uj | , otherwise, (9)

where (i) dij = ‖x̂i(t+ 1)− pj(t+ 1)‖2 and i is the index
of the target assigned to robot j, (ii) Rj denotes the sensing
range of robot j, and (iii) u∗j ∈ Uj is the control input
that minimizes the geodesic distance between pj(t + 1) and
x̂i(t + 1), i.e., u∗j = argminuj∈Uj ‖x̂i(t+ 1)− pj(t+ 1)‖g ,
where ‖·‖g denotes the geodesic norm/distance. Observe that
the density functions (8) and (9) satisfy Assumptions 3.1 and
3.2, respectively, by construction. In words, (9) selects more
often control inputs that drive the robots close to the predicted
positions x̂i(t + 1) of their corresponding assigned targets i,
until these predicted positions are within the robots’ sensing
range. Once this happens, controllers are selected randomly.

Finally, observe that (9) is designed independently of the
sensor models. Alternative density functions fU can also be



Algorithm 2: On-the-fly Target Assignment
Input: (i) sqrand , (ii) det Σ(F ) & δi, ∀i ∈ M
Output: sqnew : N → M

1 sqnew = sqrand ;
2 Compute set D of robots that are candidate to update their assigned

targets;
3 Initialize set of targets to be assigned to robots as

Tto-assign = M\ {Tas ∪ Tsat};
4 if Tto-assign = ∅ then
5 Tto-assign = Tunsat;
6 for j ∈ D do
7 sqnew (j) = iclosest, where iclosest ∈ Tto-assign;
8 Update Tto-assign = Tto-assign \ {iclosest};
9 if Tto-assign = ∅ then

10 Tto-assign = Tunsat;

proposed in place of (9) that exploit the sensor model. For
instance, in case of a bearing sensor or monocular camera, it
may be desirable to select control inputs that drive the robots
around their assigned targets, once the latter are inside the
field-of-view of the corresponding robots (instead of selecting
random control inputs); however, such a design process will
be explored in the future.

Remark 5.1 (On-the-fly update of sampling strategy):
Note that once a feasible solution to (5) is found, or after a
user-specified number of iterations, we can switch to uniform
density functions by selecting pU = pV = 0 that promote
random exploration, or to any other density function. Recall
that the theoretical guarantees provided in Section IV hold
even if the density functions fV and fU change with iterations
n of Algorithm 1, as long as Assumptions 3.1 and 3.2 are
always satisfied.

C. On-the-fly Target Assignment

In what follows, we describe the target assignment process
that is executed every time a state qnew(t + 1) = [pnew(t +
1),Σnew(t+1)] is added to the tree; see also Algorithm 2. The
goal of Algorithm 2 is to assign targets to each robot when
they are in the state qnew(t + 1). Specifically, for each state
q(t) ∈ V , we construct a function sq : N →M that assigns to
each robot j ∈ N a single target i ∈M. Hereafter, we denote
by sq(j) the target that is assigned to robot j in state q(t).
Recall from Section V-B, that the assigned targets associated
with the state qrand(t) are used to construct fU (u|qrand(t)).

First, the function sqnew is initially defined as sqnew = sqrand ,
where recall that qrand is the parent node of qnew in the tree
G [line 1, Alg. 2]. Then, we compute (i) the set D ⊆ N
that collects the indices of the robots that need to update their
assigned targets [line 2, Alg. 2], and (ii) the set Tto-assign ⊆M
that collects the indices of the targets that are available to be
assigned to the robots in D [lines 3-5, Alg. 2]. Then, targets
from Tto-assign are assigned to the robots in D [lines 6-10].

In particular, the set D collects the indices j ∈ N of robots
that in state qnew either (i) satisfy det Σi(F ) ≤ δi, where i is
the target assigned to robot j, i.e., i = sqnew(j), and Σi,new is its
respective covariance, or (ii) the set Ni = {j | i = sj,qnew} that
collects the robots that are responsible for target i, contains
more than one robot, i.e., |Ni| > 1, or both (i) and (ii).

Next, the set Tto-assign is constructed. First, it is initialized as
Tto-assign = M \ {Tas ∪ Tsat}, where Tas ⊆ M collects the
indices of the targets that have already been assigned to robots
(recall that, in general, it may hold M > N ) and Tsat ⊆ M
collects the indices i ∈ M of the targets that already satisfy
det Σi(F ) ≤ δi [line 3, Alg. 2]. If Tto-assign = ∅, then it is
redefined as Tto-assign = Tunsat, where Tunsat collects the indices
i ∈M of the targets that do not satisfy det Σi(F ) ≤ δi [lines
4-5, Alg. 2].

Given D and Tto-assign, our goal is to assign the targets i ∈
Tto-assign to the robots j ∈ D [lines 6-10, Alg. 2]. To do this, the
robots j ∈ D sequentially select the closest target i ∈ Tto-assign
to them, denoted by iclosest. Every time a robot j picks a target
from Tto-assign, the mapping sqnew and set Tto-assign are updated
as sqnew(j) = iclosest and Tto-assign = Tto-assign \ {iclosest} [lines
7-8, Alg. 2]. If during this assignment process, it holds that
Tto-assign = ∅, then Tto-assign is reinitialized as Tto-assign = Tunsat
[lines 9-10, Alg. 2]. The latter happens if there more robots
in D than targets to be assigned. Finally, note that any other
task assignment algorithm can be employed in place of lines
6-10 that may improve the performance of Algorithm 1; see
e.g., [25, 22].

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments for the
target localization and tracking problem, described in Section
V, that illustrate the performance of Algorithm 1 compared to
existing methods. Specifically, first, we examine the scalability
of Algorithm 1 for various sizes of the workspace, numbers
of robots and targets, and robot dynamics; see Sections VI-A-
VI-B. We also show that Algorithm 1 can address large-scale
estimation tasks that are impossible using existing approaches;
see Section VI-C. Hereafter, we employ the density functions
fV and fU designed in Section V. All case studies have been
implemented using MATLAB 2016b on a computer with Intel
Core i7 3.1GHz and 16Gb RAM.

A. Robot Dynamics & Sensors

Throughout this section, we consider robots with (i)
first-order dynamics, i.e., pj(t + 1) = pj(t) + uj(t),
where pj(t) captures the position of robot j and
U = {[0,±umax], [±umax, 0], [±umax,±umax]}, where umax =
0.2m/s, and (ii) differential drive dynamics, where pj(t) cap-
tures both the position and the orientation of the robots. In the
latter case, the available motion primitives are u ∈ {0, 0.2}m/s
and ω ∈ {0,±π/4,±π/2,±π/1.33,±π} rad/s.

Moreover, we assume that the robots are equipped with
omnidirectional, range-only, line-of-sight sensors with limited
range of 2m. Every robot can take noisy measurements of its
distance from all targets that lie within its sight and range.
Specifically, the measurement associated with robot j and
target i is given by yj,i = `j,i(t) + v(t) if (`j,i(t) ≤
2) ∧ (i ∈ FOVj), where `j,i(t) is the distance between target
i and robot j, FOVj denotes the field-of-view of robot j,
and v(t) ∼ N (0, σ2(pj(t),xi(t))) is the measurement noise.
Also, we model the measurement noise so that σ increases



TABLE I
SCALABILITY ANALYSIS

First Order Dynamics Diff. Drive Dynamics
N/M Runtime Cost / F Runtime Cost / F
1/5 15.32 secs 29.28 / 302 23.74 secs 34.47 / 374
10/10 25.32 secs 11.79 / 47 55.97 secs 14.44 / 52
10/20 27.33 secs 25.12 / 47 56.86 secs 39.35 / 77
10/35 27.87 secs 44.79 / 61 58.52 secs 55.58 / 77
15/20 41.18 secs 22.85 / 42 1.84 mins 29.78 / 60
15/35 55.6 secs 36.94 / 48 2.1 mins 49.16 / 68
20/20 43.41 secs 21.96 / 46 1.64 mins 31.21 / 59
20/25 20.9 secs 13.12 / 21 1.43 mins 38.87 / 59
20/35 42.93 secs 33.20 / 44 1.57 mins 47.8 / 58
30/56 1.41 mins 58.23 / 46 2.74 mins 76.7 / 62

linearly with `j,i(t), with slope 0.25, as long as `j,i(t) ≤ 2;
if `j,i(t) > 2, then σ is infinite. Observe that this observation
model is nonlinear and, therefore, the separation principle,
discussed in Section II, does not hold; as a result, offline
control policies are not optimal. In this case, we execute
Algorithm 1 using the linearized observation model about the
predicted target positions. Note that, similar to [1], Algorithm
1 can be coupled with a Model Predictive Control approach
where the robots redesign their paths every few measurements,
to generate adaptive sensor policies.

B. Scalability Analysis

In this section, we examine the performance of Algorithm
1 with respect to the number of robots, their dynamics, and
the number of targets. The results are summarized in Table
I. In all case studies of Table I, all targets are modeled
as linear systems and the parameters δi are selected to be
δi = 1.8 × 10−6, for all i ∈ M, while the robots reside in
the 10m × 10m environment shown in Figure 3. Observe in
Table I that Algorithm 1 can design feasible paths very fast
even for large number of robots and targets regardless of the
robot dynamics; see also Figure 3(a). Finally, we also applied
Algorithm 1 to a scenario where a team of N = 7 differential
drive robots should localize and track M = 20 targets in a
significantly larger workspace, such as a residential area, with
dimensions 500m×1000m. In this scenario, the sensing range
of the robots is 20m, and the motion primitives are selected as
u ∈ {0, 2}m/s and ω ∈ {0,±π/4,±π/2,±π/1.33,±π} rad/s.
Algorithm 1 generated robot paths in 12.23 mins with terminal
horizon F = 3769 that are depicted in Figure 4.

C. Comparisons with Alternative Approaches

We first compare our algorithm to myopic/greedy ap-
proaches, where the robots select the control input that incurs
the maximum immediate decrease of the cost function in (5).
Such approaches failed to design meaningful paths, since the
majority of the robots at their initial locations cannot take
any measurement due to their limited sensing range (see e.g.,
Figure 3(a)) and, therefore, all control inputs incur the same
cost. As a result, in these case studies, the greedy approach
closely mimics random-walk methods. Furthermore, we also
compared Algorithm 1 to a (decentralized) coordinate descent
biased-greedy approach, an improved version of the standard
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(a) N/M = 10/20, Cost = 39.35,
F = 77, Runtime = 56.86secs
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Fig. 3. Comparison between Alg.1 (Fig. 3(a)) and a coordinate descent
biased-greedy approach (Fig. 3(b)) for the case study N/M = 10/20 of
Table I. The green (cyan) and red (blue) square denote the initial and final
positions of the robots (targets). Obstacles are represented by gray boxes.

Fig. 4. Case study N = 7, M = 20: Graphical depiction of the robot paths
(colored paths) and the targets (black paths).

greedy method. Specifically, the robots select control inputs
in a coordinate descent way (see [2]), as follows. If all
control inputs for a robot are equivalent, then the control
input returned by the density function fU , designed in Section
V, is selected. Otherwise, the greedy action is selected. The
resulting paths for the case study N/M = 10/20 are depicted
in Figure 3(b). Observe in these figure that the robots get
trapped in local optima/regions and fail to explore the rest of
the workspace, which is not the case when Alg. 1 is applied;
see Figure 3(a).

Second, we compared our algorithm to existing nonmyopic
algorithms. Specifically, we applied the Feedforward Value It-
eration (FVI) method that exhaustively searches both the robot
motion space and the information space to generate optimal
paths [17]. FVI also failed to solve the considered case studies
because of excessive runtime and memory requirements. For
instance, FVI was able to solve an AIA task with N = 1
robot and M = 2 targets, in 44.56 secs, with cost 0.71 and
u ∈ {0, 1}m/s. Finally, we compared Algorithm 1 to the
RIG-tree algorithm proposed in [11].3 The RIG-tree algorithm
failed to return a solution for all case studies of Table I within
2 hours. The largest estimation tasks that RIG-tree was able
to solve involved (i) N = 1 robot and M = 2 targets, and (ii)
N = 2 robots and M = 3 targets, in 2.23 and 3.91 secs with
cost 2.25 and 4.41, respectively, assuming sparsely distributed
targets. In fact, the RIG-tree algorithm has been applied only

3We appropriately modified the RIG-tree, so that it fits our problem formu-
lation. Specifically, first we used the objective function of (5) and, second, we
replaced the budget constraints in [11] with the terminal uncertainty constraint
(5b).



to cases where information is available everywhere in the
workspace; see Section 5 in [11].

VII. CONCLUSION

In this paper we proposed a new sampling-based algorithm
for multi-robot AIA tasks in complex environments supported
by formal guarantees. Comparative simulation studies vali-
dated the theoretical analysis and showed that the proposed
method can quickly compute sensor policies that satisfy de-
sired uncertainty thresholds in AIA tasks that involve large
sensor teams, workspaces, and dimensions of the hidden state,
which was impossible using relevant methods. Future work
will focus on estimating the target motion model and applying
the proposed framework to other estimation tasks, such as
wireless signal strength mapping.
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APPENDIX A
PROOF COMPLETENESS, OPTIMALITY, & COMPLEXITY

In what follows, we denote by Gn = {Vn, En,Cost} the
tree that has been built by Algorithm 1 at the n-th iteration.
The same notation also extends to fV , fU , and unew. To prove
Theorems 4.1 and 4.2, we need to prove the following results.

Lemma A.1 (Sampling Vn
krand

): Consider any subset Vn
k and

any fixed iteration index n and any fixed k ∈ {1, . . . ,Kn}.
Then, there exists an infinite number of subsequent iterations
n+ w, where w ∈ W and W ⊆ N is a subsequence of N, at
which the subset Vn

k is selected to be the set Vn+w
krand

.
Proof: Let Arand,n+w(k) = {Vn+w

krand
= Vn

k }, with w ∈ N,
denote the event that at iteration n + w of Algorithm 1 the
subset Vn

k ⊆ Vn is selected by the sampling operation to be
the set Vn+w

krand
[line 2, Alg. 1]. Also, let P(Arand,n+w(k)) denote

the probability of this event, i.e., P(Arand,n+w(k)) = fn+w
V (k).

Next, define the infinite sequence of events Arand =
{Arand,n+w(k)}∞e=0, for a given subset Vn

k ⊆ Vn. In what fol-
lows, we show that the series

∑∞
w=0 P(Arand,n+w(k)) diverges

and then we complete the proof by applying the Borel-Cantelli
lemma [10].

Recall that by Assumption 3.1(i), we have that given
any subset Vn

k ⊆ Vn, the probability fnV (k|Vn) satis-
fies fnV (k|Vn) ≥ ε, for any iteration n. Thus we have
that P(Arand,n+w(k)) = fn+w

V (k|Vn+w) ≥ ε > 0,
for all w ∈ N. Note that this result holds for any
k ∈ {1, . . . ,Kn+w} due to Assumption 3.1(i). Therefore,
we have that

∑∞
w=0 P(Arand,n+w(k)) ≥

∑∞
w=0 ε. Since ε

is a strictly positive constant, we have that
∑∞

w=0 ε di-
verges. Then, we conclude that

∑∞
w=0 P(Arand,n+w(k)) =

∞. Combining this result and the fact that the events
Arand,n+w(k) are independent by Assumption 3.1(ii), we get
that P(lim supk→∞Arand,n+w(k) = 1, by the Borel-Cantelli

lemma. In other words, the events Arand,n+w(k) occur in-
finitely often, for all k ∈ {1, . . . ,Kn}. This equivalently
means that for every subset Vn

k ⊆ Vn, for all n ∈ N+, there
exists an infinite subsequence W ⊆ N so that for all w ∈ W
it holds Vn+w

krand
= Vn, completing the proof.

Lemma A.2 (Sampling unew): Consider any subset Vn
krand

se-
lected by fV and any fixed iteration index n. Then, for any
given control input u ∈ U , there exists an infinite number of
subsequent iterations n+ w, where w ∈ W ′ and W ′ ⊆ W is
a subsequence of the sequence of W defined in Lemma A.1,
at which the control input u ∈ U is selected to be un+w

new .
Proof: This proof resembles the proof of Lemma A.1 and

is omitted.
Before stating the next result, we first define the reachable

state-space of a state q(t) = [p(t),Σ(t)] ∈ Vn
k , denoted by

R(q(t)) that collects all states q(t+ 1) = [p(t+ 1),Σ(t+ 1)]
that can be reached within one time step from q(t).

Corollary A.3 (Reachable set R(q(t))): Given any state
q(t) = [p(t),d(t)] ∈ Vn

k , for any k ∈ {1, . . . ,Kn}, Algorithm
1 will add to Vn all states that belong to the reachable
set R(q(t)) will be added to Vn+w, with probability 1, as
w → ∞, i.e., limw→∞ P ({R(q(t)) ⊆ Vn+w}) = 1. Also,
edges from q(t) to all reachable states q′(t + 1) ∈ R(q(t))
will be added to En+w, with probability 1, as w → ∞, i.e.,
limw→∞ P

(
{∪q′∈R(q)(q,q

′) ⊆ En+w}
)

= 1.
Proof: The proof straightforwardly follows from Lemmas

A.1-A.2 and is omitted.
Proof of Theorem 4.3: By construction of the path q0:F ,

it holds that q(f) ∈ R(q(f − 1)), for all f ∈ {1, . . . , F}.
Since q(0) ∈ V1, it holds that all states q ∈ R(q(0)),
including the state q(1), will be added to Vn with prob-
ability 1, as n → ∞, due to Corollary A.3.Once this
happens, the edge (q(0),q(1)) will be added to set of
edges En due to Corollary A.3.Applying Corollary A.3 in-
ductively, we get that limn→∞ P ({qf ∈ Vn}) = 1 and
limn→∞ P ({(q(f − 1),q(f)) ∈ En}) = 1, for all f ∈
{1, . . . , F} meaning that the path q0:F will be added to the
tree Gn with probability 1 as n→∞ completing the proof.

Proof of Theorem 4.2: The proof of this result straight-
forwardly follows from Theorem 4.1. Specifically, recall from
Theorem 4.1 that Algorithm 1 can find any feasible path and,
therefore, the optimal path as well, with probability 1, as
n→∞, completing the proof.

Proof of Theorem 4.3: To prove this result, we model
the sampling strategy employed by Algorithm 1 as a Poisson
binomial process. Specifically, we define Bernoulli random
variables Yn at every iteration n of Algorithm 1 so that
Yn = 1 only if the edge (q(f − 1),q(f)) is added to the
tree at iteration n, where f is the smallest element of the set
{1, . . . , F} that satisfies q(f − 1) ∈ Vn−1 and q(f) /∈ Vn−1.
Then, using the random variables Yn, we define the random
variable Y =

∑nmax
n=1 Yn which captures the total number of

successes of the random variables Yn and we show that it
follows a Poisson binomial distribution. Finally, we show that
P(Anmax(q∗0:F )) = P(Y ≥ F ) which yields (7) by applying
the Chernoff bounds to Y . The detailed proof is omitted.
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