
Seeing the Bigger Picture:
3D Latent Mapping for Mobile Manipulation Policy Learning

Sunghwan Kim, Woojeh Chung, Yulun Tian, Zhirui Dai, Arth Shukla†, Hao Su† and Nikolay Atanasov
UC San Diego, †Hillbot Inc.

{suk063,w5chung,yut034,zhdai,arshukla,haosu,natanasov}@ucsd.edu

(a) ReplicaCAD Scene (b) 3D Latent Map (c) Text Similarity (d) Attention Score

Fig. 1: (a) RGB rendering of a ReplicaCAD scene. (b) 3D latent feature map constructed by our method, visualized with principal-component
analysis (PCA). (c) Text similarity scores across the latent map relative to the text embedding of “table”. (d) Attention weights on the latent
map during policy execution highlight the regions most attended by the policy model.

Abstract—This paper investigates whether mobile manipula-
tion policies utilizing a 3D latent map achieve better spatial
and temporal understanding compared to image-based reasoning.
We introduce an end-to-end policy learning approach that
operates directly on a 3D map of latent features, which (i)
extends perception beyond the robot’s current field of view and
(ii) aggregates observations over time, resolving occlusions and
suppressing noise. Our mapping approach incrementally fuses
multiview observations into a grid of scene-specific latent fea-
tures, while a shared pre-trained scene-agnostic decoder enables
rapid online adaptation. Our policy design utilizes the feature
map by receiving both global context obtained by tokenizing
the scene-wide latent features and local perception information
that injects nearby map features into observed visual embed-
dings. Experiments demonstrate that the map-conditioned policy
reasons over the entire scene and successfully completes mobile
manipulation tasks in novel layouts where target objects lie
outside the robot’s field of view.

I. INTRODUCTION

Recent advances in robot learning have led to remark-
able progress in manipulation in semi-structured environ-
ments [1]–[3]. State-of-the-art systems harness pre-trained
large vision–language models (VLMs), whose rich semantic
priors and cross-modal reasoning translate natural language
commands directly into low-level actions. The next frontier
lies in extending these methods beyond table-top setups to
room, building, and even neighborhood scales, to support
long-term applications such as warehouse maintenance and
last-mile delivery. However, existing learning methods rely
on image-based designs that directly operates on raw video
streams. While effective for short-term action prediction, the
image-based approach inherently struggles with consistent
3D understanding and long-horizon reasoning—two critical
capabilities for spatially or temporally extended tasks.

In this work, we advocate for an alternative, 3D-based
design that conditions robot policy learning on an explicit 3D

representation of the environment. A growing body of recent
works explores 3D scene representations for manipulation.
Some methods lift 2D foundation-model features into 3D on a
per-frame basis [4]–[7]. Another line of methods encode raw
point-cloud observations directly with specialized 3D back-
bones [8]–[10]. While both families preserve metric geometry
and enhance local scene understanding, reconstructing the
scene from scratch at each timestep compromises temporal
consistency and hinders long-horizon reasoning. Complemen-
tary efforts fuse multiview observations into feature fields
offline [11]–[13]. Although these feature fields improve mul-
tiview consistency, they are confined to tabletop-scale setups
where the entire workspace remains visible at every timestep
and cannot adapt on the fly to novel views.

In this work, we aim to advance the state-of-the-art methods
for robot mobile manipulation by conditioning the robot policy
on a 3D latent map: a scene representation built incrementally
from continuous observations and maintained across tasks.
Persistent maps have long benefited navigation [14], [15],
yet their potential to enhance manipulation remains under-
explored. Such maps offer two key advantages for mobile
manipulation: (i) visibility beyond the current field of view
enables global reasoning about object locations and task
objectives, and (ii) temporal aggregation resolves occlusions
and suppresses noise from instantaneous observations, thereby
enhancing generalization. Fig. 1b illustrates a latent map
containing spatially grounded language features, generated by
our method. A policy conditioned on this map attends to
the entire latent map during task execution, demonstrating an
ability to leverage spatially and temporally extended context.

Our mapping approach incrementally fuses multiview obser-
vations into a feature grid, capturing extended horizon context.
We propose a modular design that decouples the scene-specific
feature grid from a scene-agnostic decoder, pre-trained on

diverse environments. The feature grid represents the scene
using compressed, multiview-aggregated latent features, while
the decoder is pre-trained to reconstruct target embeddings
(e.g., CLIP [16]) from these latent features to support mobile
manipulation tasks. During deployment, only the latent fea-
tures need to be inferred online, while the pre-trained decoder
is used directly, enabling rapid adaptation. To harness the main
benefits of a 3D map, our map-conditioned policy utilizes (i)
a global scene token that conveys scene-wide context, and (ii)
local feature fusion that enriches observed visual embeddings
with nearby map features.

Our contributions are summarized as follows.
• We propose a mapping approach that incrementally builds

a 3D map of latent features with a modular design that
decouples scene-specific feature optimization from scene-
agnostic feature decoding to enable generalization across
different environments.

• We design a policy model that augments visual observa-
tions with global and local latent map features, increasing
the spatial and temporal reasoning context of the model.

• We demonstrate that the map-conditioned policy reasons
effectively over the entire scene and completes mobile
manipulation tasks under novel layouts where target ob-
jects lie outside the robot’s field of view.

II. PROBLEM FORMULATION

The first objective is to construct a dense 3D latent feature
map of the robot’s workspace. Once the map is available, we
aim to design a mobile manipulation policy that treats the
latent map as an explicit state variable to execute manipulation
tasks specified in natural language.

A. Latent Feature Mapping

Let X ⊆ R3 denote the robot’s workspace, F ⊆ Rd a
latent feature space, and Y ⊆ Rk a target embedding space
(e.g., of language features such as CLIP [16]). We represent
a latent feature map as M=(Fψ, Dθ), where Fψ : X → F
is an encoder with parameters ψ that lifts workspace points
x ∈ X to the latent space and Dθ : F → Y is a decoder with
parameters θ that projects a latent feature to the output space
Y . The intermediate feature space F enables the map to cap-
ture the geometric and semantic structure of the environment
more effectively than a direct X → Y mapping [17], [18].

Problem 1. Given a dataset D = {(x, y)} ⊂ X × Y of
workspace points x with associated target labels y, learn
encoder-decoder parameters (ψ, θ) for a latent map by op-
timizing the target label reconstruction:

min
ψ,θ

E(x,y)∼D
[
L
(
Dθ(Fψ(x)), y

)]
, (1)

where L : Y × Y → R≥0 is a distance function on Y .

To instantiate Problem 1 for learning language-grounded
maps, we use dense visual features extracted from a VLM
as target labels y. Given an RGB image I , a depth image Z,
and camera pose (R, t), we compute per-patch embeddings
G ∈ Rk×(H×W) by feeding I through the VLM’s vision

VLM Embeddings

Camera Pose

Fig. 2: Visualization of per-patch VLM embeddings back-projected
into the 3D world frame using depth Zp and camera pose (R, t).

encoder. Here, following the ViT [19] convention, we partition
the image into H×W non-overlapping patches, each produc-
ing a k-dimensional feature embedding at its corresponding
spatial location. We back-project each patch p with valid depth
Zp into the 3D world frame using the camera intrinsics K and
pose (R, t), as shown in Fig. 2:

x(p) = R
(
K−1[p⊤, 1]⊤ Zp

)
+ t. (2)

Each 3D point x(p) is then paired with its corresponding
embedding y(p) = Gp, yielding a (x, y) pair. By aggregating
these pairs across multiple viewpoints, we construct a training
set D. Minimizing (1) ensures that the latent map captures
the semantics provided by the VLM and associates them with
3D spatial locations. As shown in Fig. 1c, the learned map
localizes semantic concepts queried via text prompts, enabling
spatial grounding of language.

B. Map-Conditioned Policy Learning

We consider a mobile manipulator robot performing object-
picking tasks. We train a policy with behavior cloning (BC)
[20], though other policy learning methods could also be used.
The training data consist of expert demonstration episodes
with varying target objects and environment configurations.
For each episode, the target object label (e.g., “bowl”) is
encoded by the VLM text encoder [21], producing a text
embedding ℓ. At every time step the dataset logs robot con-
figuration s (e.g., from proprioception), action a (e.g., mobile-
base and arm-joint velocities), and onboard observation o (e.g.,
RGB-D images). Given the robot’s state and observations, we
train the policy to imitate the expert’s actions.

Problem 2. Let T = {(o, s, a, ℓ)} be a set of expert demon-
strations, where each tuple contains the robot observation,
state, action, and a language embedding ℓ that specifies
the target object in an object-picking mobile manipulation
task. Using the learned map M from Problem 1, we train
a policy πϕ, parameterized by ϕ, to imitate the expert by
minimizing the negative log-likelihood of the demonstrated
actions:

min
ϕ

E(o,s,a,ℓ)∼T
[
− log πϕ(a | M, o, s, ℓ)

]
. (3)

III. LATENT FEATURE MAPPING

In this section, we present our latent map design, which
is grounded in two principles. (1) Incremental updates: a

Coarse Feature Grid

Fine Feature Grid

Decoder

Cos Sim.

VLM Embeddings

Fig. 3: Instantiation of the latent mapping approach for language
grounding. For each 3D point x, we retrieve its coarse-level feature
f1(x) and fine-level feature f2(x), concatenate them, and train the
model to align the resulting vector with the target VLM embedding
by maximizing cosine similarity.

3D feature grid continuously integrates new multiview ob-
servations, enabling the map to accumulate spatially and
temporally extended context and act as a spatial memory. (2)
Modularity: the encoder parameters ψ which associate scene-
specific features with the workspace are separated from the
decoder parameters θ, which are trained to reconstruct latent
features into target embeddings. After pre-training the decoder
on diverse environment configurations, adapting to a new
environment requires tuning only the latent features, making
our method efficiently generalizable to new environments.

A. Multiresolution Feature Grid

We represent the scene as learnable latent vectors anchored
at the vertices of a regular 3D grid. These vectors act as a
spatial memory that is updated incrementally as new observa-
tions arrive. Let G = {(zi, fi)}Mi=1, where each vertex position
zi ∈ X stores a latent vector fi ∈ Rc. For a query point
x ∈ X , its feature is retrieved by trilinear interpolation of the
eight vertex features of the voxel containing x,

f(x) =
∑

i∈N (x)

w(x, zi) fi, (4)

where N (x) indexes the neighboring vertices and w(·, ·)
provides (trilinear) interpolation weights.

To capture information at multiple scales, we use a hierarchy
of L grids {Gl}Ll=1, ranging from coarse (l=1) to fine (l=L)
resolutions, based on the design proposed in [17], [18] (see
Fig. 3). Let fl,i ∈ Rc denote the latent vector at vertex zl,i of
grid Gl = {(zl,i, fl,i)}Ml

i=1, where Ml is the number of vertices
at level l. The collection of all latent vectors ψ = { fl,i | l=
1:L, i=1:Ml} constitutes the scene-specific map parameters.
The interpolated feature at level l is fl(x). Concatenating the
level-wise features yields the final feature given to the decoder:

Fψ(x) =

L⊕
l=1

fl(x) ∈ F ⊆ Rd, d = Lc. (5)

B. Latent Feature Decoder

The decoder Dθ maps a latent feature Fψ(x) to the target
space Y . The predicted feature of any query point x ∈ X is

ŷ(x) = Dθ

(
Fψ(x)

)
∈ Y ⊆ Rk. (6)

We implement Dθ as a multilayer perceptron (MLP). The
decoder is pre-trained on scenes from diverse environment
configurations to learn a general mapping from the latent
space F to the target space Y . Intuitively, Fψ(x) serves as
a multiview-aggregated, compressed representation of target
feature embeddings, while Dθ is trained to reconstruct them
back into the target space.

During deployment, we freeze the decoder; its pre-training
procedure is detailed in Sec. V-A. Consequently, adaptation
to a new environment only updates the grid parameters ψ,
greatly accelerating optimization. The parameters ψ (and θ, if
not pre-trained) are optimized by minimizing a loss L in (1). In
practice, we align the predicted feature ŷ(x) with the reference
y using cosine similarity loss, which empirically outperforms
alternatives such as L2 loss. Given a dataset D of point–feature
pairs (x, y), the objective is

min
ψ,θ

1

|D|
∑

(x,y)∈D

[
1− cos

(
ŷ(x), y

)]
. (7)

Fig. 3 summarizes the overall mapping approach, instantiated
for language-grounding as described in Sec. II-A.

IV. MAP-CONDITIONED POLICY

This section details how our latent map M may be used to
condition a BC policy πϕ. To harness the key benefits of the
latent map, we enrich our policy network with both global
context information obtained by tokenizing the scene-wide
latent map, and locally fused perception that injects nearby
map features into observed per-patch embeddings.

A. Global Scene Token

A latent map enables a robot to reason about task-relevant
objects and goal positions even when they lie outside the
robot’s current field of view. We attend to the entire map and
distill its features into a single global scene token using a 3D
encoder adapted from Point Transformer [22]. To improve 3D
understanding, we integrate 3D Rotary Positional Encoding
(RoPE) [4], [23] into each attention layer, thereby conditioning
attention weights on relative spatial offsets (see Sec. B). The
encoder operates on the vertices of the feature grid. Before
encoding, we re-weight each vertex feature by its cosine
similarity to the target object’s text embedding ℓ ∈ Y (e.g.,
“apple”), guiding the model to focus on task-relevant regions:

y0(z) = S
(
ŷ(z), ℓ

)
, z ∈ Z0, ŷ(z) ∈ Y, (8)

S(v, ℓ) =
(
1 + cos(v, ℓ)

)
v, v ∈ Y. (9)

Here, y0(·) is the task-aware feature fed to the encoder, and
Z0 = {z1,i} is the set of vertices of the coarse grid.

Transformer

Encoder

Local Feature Fusion

Transformer

DecoderPoint

Transformer

2D VLM Embeddings

Latent Map

State

Position Embeddings

Action Sequence

Fig. 4: Overview of map-conditioned policy architecture. Our model
extends ACT [24] by conditioning on both global and local features
from the latent map.

The encoder proceeds through N hierarchical stages. At
stage n ∈ {1, . . . , N} it operates on the vertices Zn−1 with
their corresponding features yn−1(·). Each stage comprises

Centroid sampling: Cn = FPS
(
Zn−1,Mn

)
,

Ball query: Nn,j = Brn
(
cn,j

)
, cn,j ∈ Cn,

Attention: {hn,j(b)}b∈Nn,j
= MHA

(
{yn−1(b)}b∈Nn,j

)
,

Max-pooling: yn(cn,j) = max
b∈Nn,j

hn,j(b). (10)

where FPS(·) selects Mn farthest-point centroids, Brn(·) is a
ball query detailed in Sec. A, and MHA(·) represents multi-
head self-attention equipped with 3D RoPE. At each stage, the
new vertex set is Zn=Cn with features yn(·). After the final
stage, we apply max-pooling to produce the scene token

g = max
j∈CN

yN
(
cN,j

)
, (11)

which provides scene-wide, task-aware context to the policy.

B. Local Feature Fusion

Instantaneous observations can be noisy or occluded,
whereas a temporally aggregated map supplies more robust
long-term context. We therefore introduce a local feature-
fusion module that enriches instantaneous per-patch embed-
dings with spatially aligned map features. This fusion operates
on the vertices of the fine-level grid G2. For each patch
p with VLM embedding Gp, we back-project to its 3D
point x(p) using (2) and retrieve its neighboring vertices
Np=Br2

(
x(p)

)
∩ G2. We then construct a gated token set

Tp =
(
S(Gp, ℓ)︸ ︷︷ ︸
up,0

, S
(
ŷ(z1), ℓ

)︸ ︷︷ ︸
up,1

, . . . , S
(
ŷ(z|Np|), ℓ

)︸ ︷︷ ︸
up,|Np|

)
, (12)

where each zi ∈ Np. A self-attention layer equipped with 3D
RoPE updates the token set:(
hp,0, . . . , hp,|Np|

)
= MHA

(
{u}u∈Tp

)
, G̃p = hp,0. (13)

The first output token hp,0 ∈ Rk corresponds to the original
patch query modulated by local map context. We discard the
remaining tokens hp,m (m ≥ 1) to keep the downstream token
budget unchanged. Collecting G̃p over all patches yields the
set of map-enriched per-patch embeddings G̃.

C. Policy Architecture

We implement our map-conditioned BC policy by adapting
the Action Chunking Transformer (ACT) [24]. At each control
step, ACT attends to the visual tokens G̃, the global scene
token g, and the proprioceptive state s. We project s to the
visual token dimension and append it to G̃. Spatial relations
among the per-patch embeddings are encoded with 3D RoPE.
A Transformer encoder processes the resulting tokens; its
output, concatenated with g, provides keys and values for
the ACT decoder. Fixed, learnable positional embeddings
serve as decoder queries, whose MLP head then converts
the resulting latent chunks into continuous control commands.
Fig. 4 summarizes the full architecture.

V. EVALUATION

This section evaluates whether our map-conditioned policy
improves mobile manipulation performance. We show that it
outperforms an image-based approach, particularly when the
robot begins far from its target objects. After describing the
implementation details and experiment setup, we compare our
method against baselines using direct visual representations.
All experiments are conducted with the ManiSkill [25] simula-
tor using ReplicaCAD scenes from Habitat [26]. Our codebase
extends ManiSkill-HAB [27].

A. Implementation Details

This subsection outlines our mapping pipeline; implemen-
tation details of policy architecture are provided in Sec. C. We
process one ReplicaCAD [26] scene at a time. As each scene
comprises multiple environment configurations with different
object layouts, we assign a separate feature grid to every
configuration. The decoder is jointly pre-trained across all
configurations within a scene and then frozen. For efficiency,
each configuration’s feature grid is pre-trained offline and
loaded on demand during policy learning. Maps are built
directly from the robot’s RGB-D observations, with dynamic
regions masked out using depth. We use EVA-02-Large [21]
as the VLM backbone. The map is represented by a two-level
grid (L=2): a coarse-level with 0.4 m voxels (l=1) and a fine-
level with 0.2 m voxels (l=2). Note that each map captures
only the initial object arrangement.

B. Experiment Setup

Benchmark. We adapt the Pick subtasks of two home-
rearrangement benchmarks, SetTable and PrepareGroceries
[26], [27]. Unlike the original benchmarks, our training is
conducted solely on demonstrations collected in a single
scene (sc1-13). These demonstrations are generated using
the Reinforcement Learning (RL) policy released by [27].
Subsequently, a BC policy is trained as described in Sec. IV.

Evaluation Metric. Performance is evaluated using Suc-
cess Rate (SR) and Episode Reward (ER). ER is the time-
accumulated dense reward, which is dominated by five main
terms: reach shaping, a grasp bonus, post-grasp shaping, a
success bonus, and a collision penalty. We evaluate perfor-
mance on both the training scene (ID, sc1-13) and a novel,

Image-BC Map-BCInitial Configuration
Se

tT
ab

le Target Object

Base Pose

Target Object

Base Pose

Pr
ep

ar
eG

ro
c.

Time
#1 #2

#3 #4
Time

Time

Time

Fig. 5: Qualitative comparison on home-rearrangement tasks under out-of-distribution conditions. At the start of each episode, the robot is
placed at a distant base pose with the target object completely outside of the robot’s field of view. Image-BC (#1 and #3) fails to localize the
object in these settings, producing inefficient trajectories that never reach the target. In contrast, Map-BC (#2 and #4) successfully navigates
to and grasps the object, completing the task with direct efficient trajectories.

TABLE I: Performance of BC policies using different visual representations for the Pick subtasks of two home-rearrangement benchmarks.
For each task, we report success rate (SR↑) and episode reward (ER↑) on both the training scene (ID) and a novel scene (OOD), averaged
over three runs. Best and second-best results are highlighted in bold and underlined, respectively.

SetTable-Pick PrepareGroceries-Pick
Method SR (ID) SR (OOD) ER (ID) ER (OOD) SR (ID) SR (OOD) ER (ID) ER (OOD)
Image-BC 0.38 0.31 0.51 0.47 0.21 0.17 0.4 0.38
Uplifted [5] 0.35 0.33 0.47 0.45 0.23 0.17 0.42 0.38
Point Cloud [8] 0.39 0.34 0.47 0.46 0.19 0.16 0.39 0.38
Map-BC (ours) 0.54 0.44 0.59 0.53 0.28 0.25 0.47 0.42

unseen scene (OOD, sc1-10). For the OOD scene, we
assume access to a pre-generated latent map but no expert
demonstrations, thereby assessing the generalization capacity.
During evaluation, we sample 100 environment configurations
per scene and report results averaged over three runs.

Baselines. We compare our map-conditioned policy (Map-
BC) with three baseline policies that rely on alternative visual
representations:

• Image-BC: Use raw 2D VLM embeddings directly.
• Uplifted: Use 2D VLM embeddings lifted to transient 3D

tokens, following [5].
• Point Cloud: Process point-cloud observations processed

using a 3D encoder, following [8].

To ensure a fair comparison, all baseline methods share the
same policy architecture as our proposed approach. Addition-
ally, 3D RoPE is applied to Uplifted and Point Cloud.

C. Results

Table I shows that Map-BC achieves the highest SR and ER
in both ID and OOD scenes. The stronger scene understanding
capability of our method allows the robot to localize and reach
targets more efficiently, e.g., a 10% ER improvement over
Image-BC in the OOD setting. We attribute these gains to
the latent map’s capacity for global reasoning.

In Fig. 5 we test whether the map-conditioned policy can
perform global reasoning using the latent map. To make the
target difficult to localize, we initialize the robot at a pose
deliberately perturbed in both translation and rotation, so
that the target lies outside its field of view for an extended
period. We evaluate five translational offsets paired with four
rotational offsets. Map-BC outperforms Image-BC in every
case; for clarity, the figure visualizes the two most illustrative
runs. The robot’s pose is plotted every 0.8 s until termination.
The Image-BC baseline produces erratic, cluttered trajectories

and fails to reach the target, whereas Map-BC drives directly
to the goal and completes the task. These qualitative results
indicate that the latent map enables the policy to develop a
global understanding of the scene.

VI. CONCLUSION AND FUTURE WORK

While 3D environment maps have long been core com-
ponents of navigation, they have been largely overlooked in
learning manipulation policies. In this paper, we presented
a 3D latent map formulation that offers key advantages for
manipulation: (i) perception beyond the robot’s current field
of view and (ii) observation aggregation over long horizons.
Building on these advantages, we proposed an end-to-end
approach that couples a 3D latent map with a mobile manipu-
lation policy, providing the robot with rich spatial and temporal
context. Experiments on object-picking tasks demonstrate that
the map-conditioned policy reasons over the entire scene and
successfully completes tasks in novel layouts.

We identify three directions for future work. First, our
current implementation uses pre-generated maps; extending
it to online mapping would enable autonomous operation.
Second, while our work considered object-picking tasks, it
can be extended to more general long-horizon, multi-stage
tasks to broaden its applicability. Finally, we plan to transfer
the method from simulation to the real world, validating
its robustness and effectiveness fro mobile manipulation in
diverse environments.

ACKNOWLEDGMENTS

We gratefully acknowledge support from NSF CCF-
2402689 (ExpandAI) and the Technology Innovation Program
(20018112, Development of autonomous manipulation and
gripping technology using imitation learning based on visual
and tactile sensing) funded by the Ministry of Trade, Industry
& Energy (MOTIE), Korea.

REFERENCES

[1] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai,
L. Groom, K. Hausman, B. Ichter et al., “A vision-languageaction flow
model for general robot control,” RSS, 2025. 1

[2] M. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair,
R. Rafailov, E. Foster, G. Lam, P. Sanketi, Q. Vuong, T. Kollar,
B. Burchfiel, R. Tedrake, D. Sadigh, S. Levine, P. Liang, and C. Finn,
“OpenVLA: An Open-Source Vision-Language-Action Model,” arXiv
preprint arXiv:2406.09246, 2024. 1

[3] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, A. Wahid,
J. Tompson, Q. Vuong, T. Yu, W. Huang et al., “PaLM-E: An embodied
multimodal language model,” ICML, 2023. 1

[4] T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragkiadaki, “Act3D: 3D
feature field transformers for multi-task robotic manipulation,” in CoRL,
2023. 1, 3

[5] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki, “3D Diffuser Actor: Policy
diffusion with 3D scene representations,” CoRL, 2024. 1, 5

[6] Y. Ze, G. Yan, Y.-H. Wu, A. Macaluso, Y. Ge, J. Ye, N. Hansen,
L. E. Li, and X. Wang, “GNFactor: Multi-task real robot learning with
generalizable neural feature fields,” in CoRL, 2023. 1

[7] Y. Wang, G. Yin, B. Huang, T. Kelestemur, J. Wang, and Y. Li, “GenDP:
3D semantic fields for category-level generalizable diffusion policy,” in
CoRL, 2024. 1

[8] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu, “3D
Diffusion Policy: Generalizable visuomotor policy learning via simple
3D representations,” 2024. 1, 5

[9] Y. Ze, Z. Chen, W. Wang, T. Chen, X. He, Y. Yuan, X. B. Peng,
and J. Wu, “Generalizable humanoid manipulation with improved 3D
diffusion policies,” arXiv preprint arXiv:2410.10803, 2024. 1

[10] S. Peri, I. Lee, C. Kim, L. Fuxin, T. Hermans, and S. Lee, “Point cloud
models improve visual robustness in robotic learners,” ICRA, 2024. 1

[11] A. Rashid, S. Sharma, C. M. Kim, J. Kerr, L. Y. Chen, A. Kanazawa,
and K. Goldberg, “Language embedded radiance fields for zero-shot
task-oriented grasping,” in CoRL, 2023. 1

[12] W. Shen, G. Yang, A. Yu, J. Wong, L. P. Kaelbling, and P. Isola,
“Distilled feature fields enable few-shot language-guided manipulation,”
CoRL, 2023. 1

[13] Y. Wang, M. Zhang, Z. Li, K. R. Driggs-Campbell, J. Wu, L. Fei-
Fei, and Y. Li, “D3 Fields: Dynamic 3D descriptor fields for zero-shot
generalizable robotic manipulation,” in CoRL, 2024. 1

[14] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” T-RO,
2016. 1

[15] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: part i,” RA Magazine, 2006. 1

[16] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in ICML, 2021. 2

[17] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” TOG, 2022. 2, 3

[18] T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. Loop, D. Nowrouzezahrai,
A. Jacobson, M. McGuire, and S. Fidler, “Neural geometric level of
detail: Real-time rendering with implicit 3d shapes,” in CVPR, 2021. 2,
3

[19] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” ICLR, 2021. 2

[20] M. Bain and C. Sammut, “A Framework for Behavioural Cloning,” in
Machine Intelligence 15: Intelligent Agents, 1999. 2

[21] Y. Fang, Q. Sun, X. Wang, T. Huang, X. Wang, and Y. Cao, “EVA-02:
A visual representation for neon genesis,” Image and Vision Computing,
2024. 2, 4

[22] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point Transformer,”
in ICCV, 2021. 3

[23] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu, “RoFormer: En-
hanced transformer with rotary position embedding,” Neurocomputing,
2024. 3

[24] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained
bimanual manipulation with low-cost hardware,” RSS, 2023. 4

[25] J. Gu, F. Xiang, X. Li, Z. Ling, X. Liu, T. Mu, Y. Tang, S. Tao, X. Wei,
Y. Yao et al., “ManiSkill2: A unified benchmark for generalizable
manipulation skills,” ICLR, 2023. 4

[26] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner,
N. Maestre, M. Mukadam, D. S. Chaplot, O. Maksymets et al., “Habitat
2.0: Training home assistants to rearrange their habitat,” NeurIPS, 2021.
4

[27] A. Shukla, S. Tao, and H. Su, “ManiSkill-HAB: A benchmark for low-
level manipulation in home rearrangement tasks,” ICLR, 2025. 4

APPENDIX A
BALL QUERY

Given a query point x ∈ X and a radius r > 0, the ball-
query operator returns

Br(x) =
{
z ∈ X

∣∣ ∥x− z∥2 ≤ r
}
, (14)

where X is the set of map vertices. In practice, the K closest
elements of Br(x) are retained; if |Br(x)| < K, the set is
padded with x.

APPENDIX B
3D ROTARY POSITIONAL ENCODING.

For a token located at w = (wx, wy, wz) ∈ R3 and an
embedding vector f ∈ Rd with 6 | d, first reshape f into d

6
six-dimensional blocks

f =
[
f (1), f (2), . . . , f (d/6)

]
, θk = β− k/(d/6), (15)

where each f (k) ∈ R6 and β (typically 104) sets the geometric
progression of inverse wavelengths. Next, rotate every block
about the three Cartesian axes,

Mk(w) = R
(
θkwx

)
⊕ R

(
θkwy

)
⊕ R

(
θkwz

)
∈ R6×6, (16)

where R(α) =
[
cosα − sinα
sinα cosα

]
is the planar rotation matrix

and ⊕ denotes block-diagonal concatenation. Stack the block
rotations once and apply them to f :

M(w) = diag
(
M1(w), . . . ,Md/6(w)

)
. (17)

We define RoPE(w, f) = M(w) f . For two tokens i, j at
positions wi, wj with embeddings fi, fj ∈ Rd,

RoPE(wi, fi)
⊤RoPE(wj , fj) = f⊤i M(wj − wi) fj , (18)

so the dot-product attention depends only on the relative
displacement wj − wi.

APPENDIX C
MORE IMPLEMENTATION DETAILS

The global scene encoder is a four-stage hierarchical trans-
former (N = 4). At stage n we downsample the point set
to Mn = 0.25Mn−1 centroids, and we use ball query radii of
(1, 2, 4, 100) for the successive stages. For local feature fusion,
the ball query radius is fixed to the voxel size of the fine-level
grid, i.e. 0.2 m. In the policy network, the Transformer encoder
contains four layers and the decoder consists of six layers, and
we roll out action chunks over a time horizon of 16 steps.

	Introduction
	Problem Formulation
	Latent Feature Mapping
	Map-Conditioned Policy Learning

	Latent Feature Mapping
	Multiresolution Feature Grid
	Latent Feature Decoder

	Map-Conditioned Policy
	Global Scene Token
	Local Feature Fusion
	Policy Architecture

	Evaluation
	Implementation Details
	Experiment Setup
	Results

	Conclusion and Future Work
	References
	Appendix A: Ball Query
	Appendix B: 3D Rotary Positional Encoding.
	Appendix C: More implementation Details

