EAST: Environment-Aware Safe Tracking for Robot
Navigation in Dynamic Environments

Zhichao Li't, Yinzhuang Yi'™, Zhuolin Niu!, Nikolay Atanasov!

!Department of Electrical and Computer Engineering, University of California San
Diego, La Jolla, 92093, CA, USA.

*Corresponding author(s). E-mail(s): yiyi@ucsd.edu;
Contributing authors: zhichaoli@ucsd.edu; zhniu@ucsd.edu; natanasov@ucsd.edu;
TThese authors contributed equally to this work.

Abstract

This paper considers the problem of autonomous mobile robot navigation in unknown environments
with moving obstacles. We propose a new method to achieve environment-aware safe tracking (EAST)
of robot motion plans that integrates an obstacle clearance cost for path planning, a convex reachable
set for robot motion prediction, and safety constraints for dynamic obstacle avoidance. EAST adapts
the motion of the robot according to the locally sensed environment geometry and dynamics, leading
to fast motion in wide open areas and cautious behavior in narrow passages or near moving obstacles.
Our control design uses a reference governor, a virtual dynamical system that guides the robot’s
motion and decouples the path tracking and safety objectives. While reference governor methods
have been used for safe tracking control in static environments, our key contribution is an extension
to dynamic environments using convex optimization with control barrier function (CBF) constraints.
Thus, our work establishes a connection between reference governor techniques and CBF techniques
for safe control in dynamic environments. We validate our approach in simulated and real-world

environments, featuring complex obstacle configurations and natural dynamic obstacle motion.

Keywords: safe robot navigation in dynamic environments, reference governor control, control barrier

function

1 Introduction

Autonomous mobile robots are being increasingly
integrated into human environments to support
services including transportation, infrastructure
inspection, cleaning, and medical assistance. Reli-
able robot navigation is a crucial aspect for
enabling these services, leading to a growing focus
on developing certifiably safe yet efficient robot
navigation techniques.

In this paper, we consider the problem of
safe robot navigation in unknown environments

with moving obstacles. The objective is to enable
a mobile robot to navigate to a desired goal
safely, potentially without prior knowledge of the
environment, relying solely on onboard sensing.
The safe control problem can be approached
using model predictive control (MPC) (Borrelli,
Bemporad, & Morari, 2017; Bravo, Alamo, &
Camacho, 2006; Dirckx et al., 2025; Y. Gao,
Gray, Tseng, & Borrelli, 2014; Saccani, Cecchin,
& Fagiano, 2023; Santillo & Jankovic, 2021; Wen,
Dong, & Chen, 2024), quadratic programming
with control barrier function (CBF) constraints



(Allibhoy & Cortés, 2024; Ames et al., 2019;
Ames, Xu, Grizzle, & Tabuada, 2017; Borrmann,
Wang, Ames, & Egerstedt, 2015; Chandra, Zinage,
Bakolas, Stone, & Biswas, 2025; Dai et al., 2023;
Mestres, Nieto-Granda, & Cortés, 2024; Squires,
Pierpaoli, & Egerstedt, 2018), or Hamilton—Jacobi
(HJ) reachability analysis (Bajcsy, Bansal, Bron-
stein, Tolani, & Tomlin, 2019; Ding, Li, Huang,
& Tomlin, 2011; Fisac, Chen, Tomlin, & Sastry,
2015; Ganai, Gao, & Herbert, 2024; Margellos &
Lygeros, 2011; Sharpless, Shinde, Kim, Chow, &
Herbert, 2023). However, many of these methods
require prior knowledge of the obstacle configura-
tion to form safety constraints, and their extension
to time-varying safety constraints is non-trivial.

In this paper, we consider the reference gover-
nor method (Bemporad, 1998; Garone, Cairano,
& Kolmanovsky, 2017; Garone & Nicotra, 2016;
Li, Arslan, & Atanasov, 2020; Nicotra & Garone,
2018a), which does not impose constraints on
the system dynamics directly. Instead, a virtual
dynamical system, called reference governor, is
introduced to decouple the stabilization and safety
objectives. The governor state acts as a desired
equilibrium point for the robot, while safety con-
straints are enforced by controlling the evolution
of the governor state by comparing the obstacle
distance to the robot’s Lyapunov function. With
few exceptions (Hosseinzadeh, Sinopoli, & Bobick,
2020; Miguel & Kolmanovsky, 2024), reference
governor techniques have been used to achieve safe
tracking only in static environments.

Our contribution is a new reference gover-
nor tracking control design based on optimization
with Lyapunov function constraints to account for
static obtacles and time-varying CBF constraints
to account for dynamic obstacles. The resulting
optimization is a convex quadratically constrained
quadratic program, which can be solved efficiently.
Our formulation establishes a connection between
reference governor techniques and CBF techniques
for safe control synthesis. Based on this formula-
tion, we develop an environment-aware safe track-
ing (EAST) method that dynamically adjusts the
governor state to avoid both static and dynamic
obstacles, while guiding the robot along a refer-
ence path. EAST also integrates a motion planner
with an obstacle clearance cost to periodically
replan the reference path for the governor as new
observations from the environment are received by
the robot. Thus, EAST can guide a mobile robot

through an unknown environment, sensing obsta-
cles online and relying on low-frequency planning
and high-frequency control to make necessary
maneuvers, while providing rigorous stability and
safety guarantees.

We evaluate the performance of EAST exten-
sively in both simulated and real-world environ-
ments, featuring large areas with complex obstacle
configurations and natural obstacle motion. An
open-source implementation of EAST is avail-
able at https://github.com/ExistentialRobotics/
EAST.

2 Related Work

In safety-critical robotics applications, safety
requirements are typically formulated as con-
straints in an optimization problem, aiming to
synthesize control inputs or control policies for
the robot. These safety requirements may arise
from diverse considerations, including geometric
constraints, actuator limits (Fan, Liu, & Belab-
bas, 2019), or more abstract task-specific and
semantic-rich constraints (Nakamura, Peters, &
Bajesy, 2025). MPC (Borrelli et al., 2017) is a
widely used approach for safe control synthesis,
which approximates an infinite-horizon optimal
control problem with a sequence of finite-horizon
problems. To ensure recursive feasibility, MPC for-
mulations typically require the constraint sets to
be polytopic (Borrelli et al., 2017; Y. Gao et al.,
2014) or the feasible space to be approximated
with convex regions (F. Gao, Wu, Lin, & Shen,
2018). The EVA-Planner (Quan, Zhang, Zhong,
Xu, & Gao, 2021) is an MPC-based method for
safe tracking that is closely related to our work.
To deal with general constraints, the EVA-Planner
incorporates the constraints as (soft) cost terms
and uses a two-level MPC formulation proposed
in (Y. Gao, Lin, Borrelli, Tseng, & Hrovat, 2010).
The high-level MPC uses a reduced-order model
to generate a feasible reference trajectory effi-
ciently, while the low-level MPC uses the full-order
model to generate control inputs for path track-
ing. In contrast, our method imposes hard con-
straints using a reduced-order reference governor
system and directly handles general (non-convex)
constraints.

In the presence of dynamic obstacles, the
constraints become time-varying. Applying MPC
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techniques in such settings requires motion predic-
tion of the dynamic obstacles (Brito, Floor, Fer-
ranti, & Alonso-Mora, 2019; Lindqvist, Mansouri,
Agha-mohammadi, & Nikolakopoulos, 2020). Our
method also requires obstacle motion prediction
but can directly handle non-convex constraints
encoded as time-varying CBF on the governor
system input.

CBF methods (Ames et al., 2019; Ames, Griz-
zle, & Tabuada, 2014; Ames et al., 2017) are
increasingly used in safety-critical control appli-
cations, owing to their simplicity for ensuring
safety with non-convex and dynamics-aware con-
straints. As discussed in Ames et al. (2014), for
control-affine systems, the CBF conditions can
be expressed as linear constraints in the control
input. This structure enables the synthesis of safe
controllers via quadratic programming. However,
constructing valid CBFs remains a challenging
task (Ames et al., 2019), often requiring prior
knowledge of obstacles, which can limit applicabil-
ity in dynamic or partially known environments.
Long, Qian, Cortés, and Atanasov (2021) con-
struct CBF constraints for safe robot navigation
online from onboard range sensing. However, this
approach is limited to static obstacles. Further-
more, CBF constraints derived from onboard mea-
surements (Keyumarsi, Atman, & Gusrialdi, 2024;
Long et al., 2021) typically require the system to
have relative degree one. Extending such methods
to higher-relative-degree systems requires non-
trivial generalizations (Nguyen & Sreenath, 2016;
Xiao & Belta, 2019). In contrast, our formulation
imposes the CBF constraints on the governor sys-
tem, which is of relative degree one by design,
thus circumventing the complexity associated with
higher-order CBF constructions.

Reachability-based approaches for safe robot
navigation depend on accurate reachable set
approximations. Various techniques have been
developed to approximate reachable sets, includ-
ing sum-of-squares optimization (Kousik, Vaskov,
Bu, Johnson-Roberson, & Vasudevan, 2020),
funnels (Burridge, Rizzi, & Koditschek, 1999),
and Hamilton-Jacobi (HJ) reachability analysis
(Bansal, Chen, Herbert, & Tomlin, 2017; Ding et
al., 2011). Notably, HJ reachability analysis has
demonstrated its effectiveness for safe robot nav-
igation (Borquez, Chakraborty, Wang, & Bansal,
2024; Herbert et al., 2017; Seo, Lee, Son, Tomlin,

& Kim, 2019). Although time-varying constraints
can be handled by the HJ reachability approach
(Fisac et al., 2015; Margellos & Lygeros, 2011),
the reachability computations require solving HJ
partial differential equations, which is challeng-
ing for high-dimensional systems. In contrast, our
approach enforces safety in dynamic environments
by formulating a convex quadratically constrained
quadratic program for the reduced-order reference
governor system, providing a computationally effi-
cient alternative to HJ reachability methods.

To address the challenge of satisfying safety
and stability constraints simultaneously, reference
governor techniques (Bemporad, 1998; Garone et
al., 2017; Garone & Nicotra, 2016) assume the
availability of a pre-defined control law that stabi-
lizes the system to an arbitrary equilibrium. The
method introduces a virtual reference governor
system to act as an equilibrium for the origi-
nal system, and safety constraints are imposed on
the reference governor, thus decoupling the objec-
tives of stabilization and safety. Reference gov-
ernor methods have been successfully employed
in a variety of applications, notable for ensuring
safe aerial robot navigation (Convens, Merckaert,
Nicotra, & Vanderborght, 2022; Tartaglione, Nico-
tra, Naldi, & Garone, 2024) and safe ground robot
navigation in unknown environments (Arslan &
Koditschek, 2017; Li & Atanasov, 2023). Gautam,
Nechyporenko, Lin, Roncone, and Nicotra (2025)
also extended the reference governor method to
enforce kinematic and force constraints for robot
manipulators, while transitioning between free
motion and contact modes. However, existing
applications of the reference governor are largely
restricted to static environments. Hosseinzadeh et
al. (2020) extended the explicit reference gover-
nor approach of (Nicotra & Garone, 2018b) to
accommodate time-varying constraints, under the
assumption that the evolution of the constraints
is known a priori. To address this limitation,
Miguel and Kolmanovsky (2024) recast the con-
trol problem with time-varying constraints as
an equivalent problem with time-invariant con-
straints and an unmeasured disturbance, thereby
enabling the application of robust reference gover-
nor techniques (Castroviejo-Fernandez, Li, Cotor-
ruelo, Garone, & Kolmanovsky, 2024). In contrast,
our method offers a simple yet effective extension
to the reference governor method by incorporat-
ing time-varying CBF constraints to account for



dynamic obstacles. Our approach formulates a
convex quadratically constrained quadratic pro-
gram to adapt the reference governor input,
enabling its application in environments with
moving obstacles.

3 Problem Formulation

Consider a ground wheeled robot with differential-
drive kinematics:

T cosf 0 v
k= [i] = [swo of |] =Geou. )
0 0 1
where the state x = (z,y,0) consists of posi-

tion p = (z,y) and orientation 6, while the input
u = (v,w) consists of linear velocity v and angu-
lar velocity w. The robot s body is contained in
a Euclidean ball B, (p) = {z € R? | |z — p| < r}
centered at p with radlus r.

The robot is operating in an unknown envi-
ronment YW C R? containing both static and
moving obstacles. The static obstacles are mod-
eled as a closed set ) C W. Each moving obstacle
i€ =1{1,2,....k} is modeled as a ball B,,(p;)
with radius r;, position p;, and velocity v; such
that:

Pi = Vi, (2)
where the velocity can be time varying.

The static obstacle space can be inflated to
capture all positions such that the robot body
is not contained in the free space of the static
environment:

ot = Bo(a). (3)

qeN

Similarly, define an inflated obstacle space captur-
ing both the static and dynamic obstacles:

<U Br7+r pl ) U Q. (4)

1€L

Definition 1 The robot is safe if it remains collision-
free with respect to both static and moving obstacles
at all times, i.e., p(t) € cl(W \ O (t)), V¢t > 0, where
cl(+) denotes the closure of a set.
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Flg 1 Map update and path re- plan The left
figure shows the partial map and the planned path
at the start. The right figure shows an updated
map and a re-planned path as the robot proceeds
to the goal.

The robot is equipped with a sensor, such as
a LiDAR or depth camera, that provides distance
measurements from the robot’s position p(t) to
the obstacles O (t). We assume that the robot is
able to measure the positions p;(t) and velocities
v;(t) of the moving obstacles (e.g., using an object
tracking algorithm (Dendorfer et al., 2020)).

The quadratic distance between a point a and
a set B is defined as:

dqg(a,B) = inf [la—blq, (5)

where [|x|q = v/xT Qx for a symmetric positive-
definite matrix Q. Similarly, the quadratic dis-
tance between two sets A, B is defined as:

dq(A, B) == g2~ Pla- (6)

EA,
When Q = I, dq reduces to the Euclidean dis-
tance, and we drop the subscript to simplify the
notation.

The distance measurements provided by the
sensor are used to construct an occupancy map
of the environment that contains free space, occu-
pied space, and unknown space. Due to the limited
sensing range of the robot, the evolving par-
tial map is used to repeatedly re-plan a path to
a desired goal location. As the robot moves, it
receives new measurements, updates the map, and
re-plans the path, e.g., using a motion planning
algorithm such as A* (Hart, Nilsson, & Raphael,
1968) or RRT (LaValle, 1998) assuming that the
unknown space is free, as illustrated in Fig. 1.

A path is a piecewise continuous function p :
[0,1] — W that maps a path-length parameter



‘ Fig. 2: Jackal unmanned grounci vehicle.

o € [0,1] to the interior of the free space consid-
ered by the planner. A path starts at p(0) and
ends at p(1).

Our objective is to design a control policy
for the robot with kinematics in (1) to track a
planned path p(c) while remaining safe at all
times (Def. 1).

4 Robot System Design

This section overviews the robot system we used to
evaluate our safe autonomous navigation method,
including the robot’s computation, sensing, and
communication hardware and its localization,
mapping, motion planning, and control software.

4.1 Hardware Architecture

We used a Clearpath Jackal unmanned ground
vehicle, shown in Fig. 2. The Jackal is a
differential-drive robot with four wheels and
dimensions 508 x 430 x 250 mm. It weighs approx-
imately 17 kg and runs at 2.0 m/sec top speed.
The robot was equipped with an on-board
computer with an Intel i7-9700TE CPU with
32GB RAM, an Ouster OS1-32 LiDAR and a 9-
axis IMU UMY7. It can be controlled manually
by a Bluetooth joystick or remotely by Wi-Fi
access. The joystick was used for manual data
collection or as an emergency stop controller.
A local network, configured through a standard
router, was used to monitor the status of our algo-
rithms through visualization tools in the Robot
Operating System (ROS) (Quigley et al., 2009).

4.2 Software Architecture

The software components fall in three categories:
localization and mapping, planning, and control.
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Fig. 3: System architecture overview. This paper
focuses on the planning block (top left) and the
control block (top right, dashed).

We used ROS to exchange messages among these
components and the Gazebo physics simulator
(Koenig & Howard, 2004) to test and debug our
algorithms before the hardware deployment. Fig. 3
provides an overview of the software architecture.

Localization and Mapping. We used Hec-
tor SLAM (Kohlbrecher, Meyer, von Stryk, &
Klingauf, 2011), which takes 2D LiDAR scans
as input and provides a 2D occupancy grid map
and robot poses (positions and orientations) in
the map frame as output. The ROS package
pointcloud_to_laserscan was used to convert
point clouds from the Ouster LIDAR to 2D LiDAR
scans.

Planning. The planning module consists of
two parts: cost map construction and geometric
path planning using the A* algorithm (Hart et al.,
1968). A cost map is constructed as a distance field
over the occupancy grid map provided by Hector
SLAM and is tuned to trade off obstacle clearance
with traveled distance. Details about the cost map
construction are discussed in Sec. 5.1.

Control. We used a low-level velocity con-
troller provided by Clearpath Robotics to convert
linear and angular velocity inputs to motor torque
inputs. Our main contribution is the design of
a trajectory tracking controller to enforce safety
constraints with respect to static and dynamic
obstacles. Our controller consists of two parts: (1)
a stabilizing control law with associated convex
reachable set over-approximation and (2) an adap-
tive trajectory tracker that balances stabilization
and safety constraints. The control law is designed
to stabilize the differential-drive robot to a desired
equilibrium and to provide a convex set that con-
tains the predicted trajectory from the initial
robot state to the equilibrium state. To bridge
the gap between the geometric path provided by



the planner and the point stabilization capability
of the controller, we design an environment-aware
safe tracker. The tracker generates local reference
points along the path for the controller adap-
tively based on comparisons between the local safe
region around the robot and the predicted con-
trolled reachable set. On the one hand, when there
are no obstacles around the robot, the reachable
set can be large, corresponding to a distant refer-
ence point along the path and high robot velocity,
without endangering safety. On the other hand,
when there are obstacles around, the local safe
space is small requiring a small reachable set to
ensure safety and, hence, a nearby reference point
along the path and low robot velocity.

5 Safe Tracking via Reference
Governor

This section describes our cost map design for
path planning (Sec. 5.1) and our control design for
environment-aware safe tracking (Sec. 5.2).

5.1 Cost Function Design

Given the robot position p(¢) at time ¢ and an
occupancy map approximating the obstacle space
O7(t) obtained from SLAM, we periodically re-
plan a path p to a desired goal position p*. We
assume that unknown parts of the map are free
for the purpose of motion planning. The motion
planning problem at time ¢ is formulated as:

min C(p),
P

st p(0) = p(t), p(1) = p*, (7)
p(o) e W\ OF(t), Vo € (0,1),

where the constraints require that the path p
starts at the current robot position p(t), ends at
the goal p*, and the robot remains collision-free
along the way with respect to the occupancy infor-
mation O (t) at time t. We restrict the path p(o)
to be a piecewise-linear function characterized by
N + 1 vertices P == {p(c;)} ., defined as:

g —0;

p(o) = p(o;) + (ploiv1) — p(oi)), (8)

Oi+1 — 04

foro; <o < 041

The motion planning problem in (7) can be
solved by a variety of motion planning algo-
rithms, such as A* (Hart et al., 1968), PRM
(Kavraki, Kolountzakis, & Latombe, 1998) and
RRT (LaValle, 1998). We focus on designing a cost
function C(p) to trade off obstacle clearance and
travel distance of the form:

N
Clp) = Y llp(oir1) = plon)ll + c(p(oir1)), (9)
i=0

where the first term captures travel distance and
the second term captures obstacle clearance. The
obstacle clearance term ¢ : R?> — R is defined as:

C(p) = Cy eXp(_Kd(pa O+))v (10)

where ¢, > 0 is a parameter placing an upper
bound on the clearance cost term and x > 0 is
an exponential decay rate parameter. One way to
obtain the distance d(p,O") in practice is via a
distance transform (Bradski, 2000) applied to the
occupancy map. Since ¢(p) in (9), (10) is posi-
tive, the Euclidean distance h(p) = ||p — p*|| is
an admissible and consistent heuristic (Likhachev,
Gordon, & Thrun, 2004) for the motion planning
problem in (7).

The safety constraint p(c) € W\ OT () in (7)
can be enforced by setting a minimum acceptable
obstacle clearance ¢(p(0)) < ¢f and considering
positions with obstacle clearance cost larger than
cy occupied.

Proposition 1 Consider the safety constraint p(o) €
W\ OF(t) in (7) and the obstacle clearance cost
defined in (10). Let cy < cu. The safety constraint in
(7) can be reformulated as:

c(p(o)) <cy, VYoe(0,1). (11)

Proof By the definition of the obstacle clearance cost
in (10), c(p(0)) < ¢f < ¢y implies d(p,0") >0. O

The obstacle clearance cost with ¢, = 8.3 and
K = T is visualized in Fig. 4b. Based on Fig. 4b, we
set ¢y =5 to ensure p(o) € W\ OT(t). An occu-
pancy grid map and the corresponding obstacle
clearance cost are shown in Fig. 4c and Fig. 4d.
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Fig. 4: Ice-cream cone approximation (orange) of the reachable set for a differential-drive system (1)
with control law in (12) is shown in (a). The start and goal positions are depicted as red and green stars,
respectively. The robot is shown as a cyan rectangle with a purple arrow showing its orientation. The
obstacle clearance cost design for motion planning is shown in (b). Note that the obstacle clearance (10)
is a function of p, but we plot the value of ¢(p) versus d(p, O"). An occupancy grid map of a simulated
environment is shown in (c), with cell values equal to the probability (in percent) of being occupied by
obstacles. The corresponding clearance cost is shown in (d), with clearance cost set to 3 for unknown

regions in the occupancy grid map.

5.2 Reference Governor Safe
Tracker

Given a path p(co) obtained from the motion plan-
ning problem in (7), our next objective is to design
a control policy for the differential-drive robot in
(1) to track p(o) subject to the safety constraint in
(11). We first present existing results considering
the case where no moving obstacles are present in
Sec. 5.2.1. Our main contribution is presented in
Sec. 5.2.2, where we extend the existing results to
dynamic environments.

5.2.1 Safe Tracking in Static
Environments

We focus on designing a control law to track a ref-
erence path p(c) subject to the safety constraint
p(t) € W\ Q* that the robot remains in the free
space of the static environment for all ¢. First, we
consider stabilization to a point p* in the absence
of constraints and approximate the reachable set
of the robot. We use the control policy proposed
by Isleyen, van de Wouw, and Arslan (2023):

k(x,p*) = [U(x’p*)] _ [ ky €y

w(x, p*) k., arctan (e /e,)|’

where x = (p, ) is the robot state, k, > 0 and
k., > 0 are control gains for the linear and angu-
lar velocities, and the error terms e, and e} are

defined as:
T T
_ |cosd N 1 _ |—sin® N
v = [Sine} (P"—p), ey = [cos@] (P"—p).

We set w(x,p*) =0 when p = p*.

Proposition 2 (Isleyen et al. (2023, Lemma 1)) The

control law in (12) applied to the system in (1) asymp-

totically steers all initial states (po,0p) in R? x [—7, )

to a given goal position p* € ]RZ, i.e., the closed-loop
*

trajectory (p(t),0(t)) satisfies limi—soc p(t) = p™*.

Accurate prediction of the closed-loop robot
trajectory is important for fast and safe path fol-
lowing. However, the closed-loop system is nonlin-
ear and predicting its trajectory requires numer-
ical integration. An alternative is to compute a
reachable set that provides bounds on the possible
trajectories. Isleyen et al. (2023) show that trajec-
tories generated by (1) under control law (12) are
contained in a reachable set with ice-cream cone
shape, illustrated in Fig. 4a.

Proposition 3 (Isleyen et al. (2023, Proposition 4))
Consider the set M(x,p*) =R (p, P, ||ef,‘||), where:
R(a,b,r)={a+a(z—a)|ac0,1],z € B-(b)}.
For any given goal position p* and any initial con-
dition x9 = (po,00), the control law (12) applied

to system (1) renders M(xo,p*) X [—m,7) forward
movariant.



0.0 1

—0.2 1

—0.4 1

—0.6

—0.8 1

—1.0

-1.2 4

—1.44

T T T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig. 5: Simulation of differential-drive trajecto-
ries (gray curves) under the control law in (12)
with k, = 2.0, k,, = 5.0, and control bounds |v| <
Umaz and |w| < Wmaee such that vmar, Wmae €
{0.1,0.2,...,1.0}. The robot position and goal
position are depicted as red and green stars,
respectively. The reachable set derived in Prop. 3
is shown as a yellow region. To ease visualization,
the trajectories are terminated when they enter
a ball of radius 0.1 centered at the goal (green
dashed circle). Despite variations in the control
limits, all trajectories remain entirely within the
reachable set, illustrating that the reachable set
depends solely on the robot’s position and the gov-
ernor’s state.

The reachable set approximation M(x, p*) is
convex, making distance computations efficient.
Additionally, it is more accurate than ellipsoidal
reachable set approximations derived from the
Lyapunov function associated with (12), resulting
in less conservative distance computation.

As stated in Prop. 3, the reachable set pre-
diction depends only on the robot position and
the goal position, and is independent of the par-
ticular control gains k, and k,. We illustrate
this with a simulation using fixed control gains
k, = 2.0 and k,, = 5.0 and varying control bounds
[v] < Vmae and |w| < Wmaz, With Vmaez, Wmaes €
{0.1,0.2,...,1.0}. We generated 100 differential-
drive trajectories using different combinations of
the control bounds. The results are shown in
Fig. 5. We observe that, for a fixed linear velocity
bound, as the angular velocity bound approaches

zer0 (Wmaz — 0), the trajectory lies closer to
the boundary of the predicted reachable set. In
contrast, for larger angular velocity bounds, the
trajectory tends to approximate a straight line
connecting the starting point to the goal point.

Given the controller in (12) and the reach-
able set approximation in Prop. 3, we enforce the
safety constraint p(t) € W\Q" using the reference
governor method (Arslan & Koditschek, 2017;
Nicotra & Garone, 2018b). A reference governor
is a first-order virtual system with dynamics:

g=—ky(g—uy), (13)

where g € R? is the governor state, u, € R? is
the governor input, and k; > 0 is a parameter. A
governor is used to decouple the stabilization of a
dynamical system from the enforcement of safety
constraints.

We use the governor state g as the reference
point in the stabilizing controller k(x, g) in (12).
This way, the closed-loop system aims to reach the
governor state, while the governor can move along
the reference path p(o) in a way to ensure that the
reachable set M(x,g) remains in free space. To
satisfy the safety constraint, the input u, of the
governor system (13) must be chosen by consid-
ering the size of the free space Q% in comparison
to the size of the reachable set approximation
M(x,g). We measure the difference in the sizes
of these sets by a distance metric d(M(x,g), ")
and use it to define a set of feasible governor
inputs, termed local safe zone.

Definition 2 A local safe zone is a set, determined by
the joint system-governor state (x,g) and the distance
d(M(x,g),2") between the reachable set M(x,g)
and the static obstacle space Q7:

£S(x.g) = {a e B | la—gl® < d(M(x,8),97)}.

The definitions of the local safe zone and gov-
ernor input are illustrated in Fig. 6. The governor
input at system-governor state (x,g) is chosen as
the point u, in the local safe zone £S(x,g) that
is furthest along the reference path p:

u, = p(g), 6 =arg m[%)i}{a | p(o) € LS(x,8)}.
oe|0,
(14)
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Fig. 6: Geometric relationship between the local
safe zone LS (yellow ball), governor input u,
(red dot) and modified governor input @, (green
cross). The blue ball Bjg_p|(g) represents an
outer approximation of the reachable set M(x, g),
the gray ball B,,1,(p;) represents the inflated
obstacle space for moving obstacle i, and d; is the
distance between the two balls.

Combining the system in (1) with controller
k(x,g) in (12) and the governor dynamics (13)
with controller in (14), we have the closed-loop
system-governor dynamics:

[Z] _ {G(X_)l]zg(zv g)} N [k—?l} u, = A(x, g)+ Bu,.
(15)

The closed-loop system-governor dynamics satisfy
the safety constraint p(t) Cc W\ QF.

Proposition 4 Given a reference path p, consider
the closed-loop system-governor dynamics in (15).
Suppose that the initial state (xg,g0) satisfies:

d(M(x0,20),27) >0, o =p(0) e W\QF. (16)

Then, the position p(t) converges to the end of the path
p(1) without collision, i.e., p(t) € W\ QT, Vt > 0.

Proof The proof follows from the results in Arslan
(2022); Isleyen et al. (2023); Li et al. (2020) and the
references therein. It consists of two parts. First, we
show that the closed-loop dynamics in (15) ensure the
safety of the system position, i.e., p(t) € W\ QF,
Vt > 0. Second, we establish that the system position
asymptotically converges to the endpoint of the refer-
ence path.

Since the distance between the reachable set and the
static obstacle space d(M(x,g), Q") is Lipschitz con-
tinuous (Isleyen et al., 2023, Proposition 9), one can

consider a partition of the time interval [0, c0) based
on distinct time instances (tg = 0,t1,...,¢;,...) with
t; < tix1 such that d(M(x(t),g(t)), Q") is either pos-
itive or zero over [t;,t;y+1), and alternates between
these cases across the partition. Given such a time
interval [t;,t;41), we distinguish two cases.

o Ifd(M(x(t),g(t)), Q") > 0foranyt € [t;,tit1),
then both the reachable set and the robot posi-
tion are in the interior of the free space, i.e.,
M(x(t),g(t)) C int(W\QT) and p(t) € W\QT,
because, by definition p(t) € M(x(t), g(t)).

o Ifd(M(x(t),g(t)), Q") =0foranyt € [t;,tit1),
we have int(M(x(t),g(t))) N int(QT) = 0. To
show this, notice that the distance between
the reachable set and the static obstacle space
d(M(x,g), ") is Lipschitz continuous and was
strictly positive in the previous time interval,
ie., dM(x(t),g(t)),Qt) > 0 for any t €
[ti—1,t;). As a result, at time t = ¢;, the
reachable set and the obstacle space are in
contact at their boundaries without overlap-
ping interiors: int(M(x,g)) ) int(Q2+) = 0, and
OM(x,8) 00T # 0, where 9(-) denotes the
boundary of a set. Hence, it follows from g =
0 over [t;,t;+1) and Prop. 3 that under the
proposed control policy (12), the robot posi-
tion trajectory satisfies p(t) € M(x(t),g(t)) C
W\ Q) for all ¢ € [t;,t;41)-

Thus, the position of the system is collision-free under
the closed-loop dynamics (15).

To establish convergence to the goal position, note
that g = 0 if and only if g = p(1) or d(M(x,g), Q") =
0. To conclude that p(1) is the only stable governor
state under governor dynamics (13), observe that con-
dition d(M(x,g), 2T) might be zero only for a finite
time. Since the distance between the system position
and the governor state |p — g|| is Lipschitz continu-
ous and asymptotically decays to zero under control
policy (12), as shown in Prop. 2. Moreover, the ref-
erence path lies in the interior of the free space, i.e.,
d(p(w), ") > 0 for all w € [0,1]. Hence, the gover-
nor dynamics might be zero only for a finite duration
away from p(1), and always stays strictly nonzero for
at least some finite time. Thus, since the control pol-
icy (12) is point stabilizing, it follows from LaSalle’s
invariance principle that both the governor state and
the system position asymptotically converge to the
end of the reference path, which completes the proof
of convergence. O

To make the robot system converge to the
goal efficiently, the gain parameter k, in (12)



should be well chosen. Based on results from
our previous work (Li et al., 2020), we develop
an adaptive gain that considers the heading of
the robot with respect to the surrounding envi-
ronment. We define a directional distance metric
that penalizes obstacles along the robot’s heading
direction v = [cosf,sin6]" as the quadratic dis-
tance between the reachable set and the obstacle
space dqpv)(M(x,g), Q") where

T

Qv =¢l+ (¢ - tb)ﬁ:’W,

(17)
with scalars g2 > ¢1 > 0. We obtain an adap-
tive control gain by computing the ratio of the
directional distance metric to the regular one:

g o dM(x,8),Q7) >0,

dqpv)(M(x,g),07)
k —
1, otherwise.

(18)

Remark 1 The gain ky in (18) is uniformly bounded.
Following the proof by Isleyen et al. (2023), one can
verify that the reachable set prediction in Prop. 3 does
not change if k, > 0. As a result, Thm. 4 still holds,
indicating that this choice of gain does not endanger
safety.

The reference governor design guides the robot
to navigate safely and efficiently in static envi-
ronments. However, when moving obstacles are
present, choosing the governor input u, along the
reference path according to (14) is not sufficient
to guarantee safety with respect to the moving
obstacles. In this case, we need to modify the
governor input ug, considering both static and
moving obstacles. This motivates our extension
of the reference governor formulation to dynamic
environments.

5.2.2 Safe Tracking in Dynamic
Environments

When moving obstacles are present, the robot may
need to deviate from its planned path to ensure
safety. To achieve this, we choose an appropriate
input u, for the governor in (13), which guides the
robot to execute avoidance maneuvers.

Inspired by safe control synthesis techniques
using CBFs (Ames et al., 2019), we formulate a
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convex optimization problem to modify the gov-
ernor input u, in a minimally invasive way to
avoid moving obstacles. We define a CBF that
encodes the safety of the system-governor system
with respect to the ith moving obstacles. Consider
a ball Bjp_g|(g) centered at the governor that
contains the robot position p and a ball B, .(p;)
centered at the ith obstacle position p; with radius
r; inflated by the robot radius r. According to
Isleyen et al. (2023, Prop. 8), the reachable set
M(x,g) is a subset of the ball B,_g|(g). Hence,
the distance between the reachable set M(x,g)
and the inflated ith moving obstacle is lower
bounded by the distance between the two balls,
which can be computed as the distance between
their centers ||g — p;|| minus the radii:

di=|lg—pill - llg —pll —ri —

This is illustrated in Fig. 6. Due to non-
differentiability of d; at ||g — p|| = 0, the distance
d; can not be used as a CBF directly. However,
note that for a > 0 and b > 0, (a — b)(a + b) =
a®> —b%> > 0 implies a — b > 0 since a +b > 0.
Hence, a candidate CBF can be constructed by
setting a = ||g — p;|| and b= ||g — p|| +r; + 7
hi(x,8,pi) = llg = pill”> = (ri + 7+ lg — pl)* .

(19)
Thus, a CBF constraint for moving obstacle ¢ can
be formulated as:

Si(ug) = hi(x7 g, Pi, ug) + ai(hi(xa g, pz)) Z Oa
(20)
where «a;(+) is a class-K function to be designed
and the time derivative of the CBF is:

(i) = [ %] (AGc g+ Buy)+ 5 v,
3
with A(x,g) and B defined in (15).

The CBF constructed above does not take
static obstacles into account. According to our
discussion in the previous subsection, a governor
input that satisfies static obstacle constraints has
to lie in the local safe zone (Def. 2). Thus, we for-
mulate an optimization problem to find a modified
governor input 4, that deviates minimally from
the desired governor input u, in (14) and both
lies within the local safe zone, 0, € £LS(x, g), and



satisfies the CBF constraints, s;(@y) > 0:

; _ 2
_I;lel& [ag — g

(21)

s.t. Si(ﬁg) >0, Viel

u, € LS(x,8).

Note that the functions s; in (20) are linear in
U,, while the last constraint is quadratic in u,.
Hence, (21) is a convex quadratically constrained
quadratic program (QCQP), which can be solved
in polynomial time (Park & Boyd, 2017).

When moving obstacles endanger the robot’s
motion, the modified governor input 4, guides the
governor and subsequently the robot to deviate
from the path p(o) to reduce collision risk. An
illustrative example is shown in Fig. 6, where a
modified governor input u, is found to avoid an
incoming obstacle.

According to Thm. 4, the proposed control
synthesis method is guaranteed to be safe in a
static environment. When moving obstacles are
present, ensuring safety depends on both the
robot’s motion and the obstacles’ motion, and the
local safe zone should remain non-empty LS(x, g).
According to the local safe zone definition (Def. 2),
the modified governor input can be decomposed as
U, = g +e, where e € Bjaq,0+)(0). The governor
dynamics can therefore be expressed as g = kge
and the CBF constraint for moving obstacle i
becomes:

oh;
og

Oh;
ox

Oh;
op;

Breeden and Panagou (2023) show that if the
CBFs are non-interfering, i.e., V;—hivghj >0 for
all 4,j € Z, then the optimization problem (21)
remains feasible provided that, for each i € Z:

Bhi
—|[Vghi| < V22

%+ Py + ai(ha)

kgd(M, Q)

(23)

The non-interfering condition on the CBFs pre-
cludes cases where the CBF gradients with respect
to g point in opposite directions. In particular, the
CBF constraints in (21) can be stacked into a lin-
ear system of inequalities: Ati; < b. According to
Farkas’ Lemma Bertsimas and Tsitsiklis (1997),
infeasibility occurs if there exists a vector y > 0
such that y ' A = 0 and y b < 0, regardless of the
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<L

L)

P2 > P
Fig. 7: Illustration of the case where the opti-
mization problem (21) becomes infeasible in the
presence of two moving obstacles. The moving
obstacles are shown as gray circles centered at pi
and po, respectively. The robot position is denoted
by p, and the governor position by g. Purple
arrows indicate the velocity vectors of the robot
and the moving obstacles, reflecting both their
directions and magnitudes.

size of the local safe zone, as illustrated in Fig. 7.
In the case of two moving obstacles, this condition
implies that the CBF gradients with respect to g
must point in opposite directions for infeasibility
to occur.

The condition in (23) further characterizes the
size of the local safe zone required for the robot to
have sufficient leeway to avoid the moving obsta-
cles, given the configuration of the robot and
the moving obstacles. If the local safe zone is
too small, e.g., when the robot is close to static
obstacles, it becomes difficult to avoid moving
obstacles. Conversely, in a relatively empty envi-
ronment, the condition in (23) is satisfied as long
as |Vgh;| # 0, which corresponds to the case
where the robot position coincides with the gover-
nor position, reducing the reachable set to a single
point. In this case, any movement of the gover-
nor enlarges the reachable set and may therefore
compromise the robot’s safety.

5.3 Generalization to Other Systems

Assuming the existence of a point-stabilizing con-
troller and associated bounded forward-invariant
reachable set prediction, our adaptive reference
governor tracking method can be generalized to
other nonlinear systems. Consider a general non-
linear system:

(24)
with state x = (p, s), including position p € R™»
and other variables s € R™ and input u € R™.
We generalize the workspace W C R"p | the static
obstacle space Q2T C W, and the obstacle space
O1 C W to the np-dimensional setting, consistent
with the definitions in Sec. 3. The reference path
p:[0,1] — W is obtained by solving (7).

x = f(x,u),



A crucial component in our adaptive reference
governor formulation is a point-stabilizing con-
trol policy. Since deriving such a policy requires
knowledge of the system dynamics, we assume its
existence.

Assumption 1 There exists a control policy k(x, p*)
such that, when applied to (24), the closed-loop tra-
jectory (p(t),s(t)) converges asymptotically from any
initial state (pg,so) € R™ "™ to the desired goal

*

position p* € R™. That is, lim¢—cc p(t) = p*.

We also assume the existence of a reachable set
prediction, which contains all possible closed-loop
trajectories under the policy k(x, p*).

Assumption 2 There exists a reachable set
M(x,p*) such that, for any goal position p* and ini-
tial condition xg = (po, sp), the control policy k(x, p*)
applied to system (24) renders M(x,p*) x R™s
forward invariant, ie., p(t) € M(x(¢),p") for all
t > 0. Moreover, the reachable set is bounded as

M(X(t),p*) - BHp(t)fp*H(p*) for all ¢ > 0.

Given Assumption 1 and Assumption 2, the
reference governor system (13) can be generalized
to guide the nonlinear system in (24). The gover-
nor input ug is specified by (14), where the local
safe zone LS(x,g) is defined according to Def. 2.
Under these conditions, Prop. 4 remains valid, and
the construction of the adaptive governor input t,
follows directly from the exposition in Sec. 5.2.2.

6 Evaluation

This section evaluates our Environment-
Aware Safe Tracking (EAST) method for safe
autonomous robot navigation. We begin by test-
ing EAST in simulated static environments.
This includes specifying the design parameters
in Sec. 6.1, analyzing the impact of the obstacle
clearance term (10) in Sec. 6.2, evaluating the
adaptive control gain (18) in Sec. 6.3, and com-
paring EAST with the EVA-Planner (Quan et
al., 2021) in Sec. 6.4. Next, we evaluate EAST in
a large cluttered real-world static environment in
Sec. 6.5. Finally, we evaluate EAST in simulated
and real-world dynamic environments in Sec. 6.6.
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Table 1: Control gain parameters.
kg
2.0

Parameter
Value

kv ke Yi | @1 | g2
Eq (18) | 15 |02 | 1 | 9

Table 2: Obstacle clearance cost parameters.

Design K Cu cy
minimum clearance 15.0 3.2 1
medium clearance 7.0 8.3 5
maximum clearance 1.0 16.9 15

6.1 Experiment Setup and
Parameters.

All experiments share the same parameters and
control gains unless explicitly stated otherwise.
We used Hector SLAM (Kohlbrecher et al., 2011)
to obtain robot pose estimates at 20 Hz and an
occupancy grid map with 0.1 m resolution. The
control gain parameters are summarized in Tab. 1.
The class-K function in (20) is defined as:

a;(hi) = vih3, (25)

where ~y; is a known parameter specified in Tab. 1.

6.2 Obstacle Clearance Cost Study

We study the performance of EAST under differ-
ent parameters for the obstacle clearance cost in
(10), presented in Tab. 2. Paths were planned in
a simulated environment for each of the clearance
cost designs, shown in Fig. 8. EAST can drive the
robot to the goal safely in each case. Associated
quantitative results are summarized in Tab. 3.
The results show that, even though the mini-
mum clearance cost design leads to the shortest
path, the tracking time is significantly longer than
the medium and maximum clearance cost designs.
The maximum clearance cost design achieves the
shortest tracking time but the longest path. The
medium clearance cost design strikes a balance
between them: the path is significantly shorter
compared to the maximum clearance cost design
while the tracking time is similar. These results
suggest that a medium clearance cost design is
preferable.



Table 3: Simulation results for three cost map designs.

Costmap Design

Plan Path Length

Robot Traj. Length

Finish Time

Avg. Clearance

Min. Clearance

minimum clearance
medium clearance
maximum clearance

15.10 m
16.19 m
22.28 m

15.66 m
15.63 m
20.32 m

32.80 sec
20.62 sec
18.96 sec

0.45 m
0.63 m
1.31 m

0.13 m
0.34 m
0.38 m
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Fig. 8: Gazebo simulation with three different obstacle clearance cost designs. The left, middle, and right
figures show the results for the minimum, median, and maximum clearance designs, respectively. The
paths are shown as a black dashed lines with start and goal denoted by a red and green star, respectively.
The colored curve represents the actual robot trajectory, with the robot to the inflated obstacle space
distance d(p, Q") shown by gradient color corresponding to the side color bar. The tracking velocity
profiles are shown as magenta arrows perpendicular to the robot’s trajectory.

6.3 Adaptive Control Gain
Evaluation

To demonstrate the effectiveness of the adaptive
control gain (18), we created a C-shaped simulated
environment using Gazebo with a pre-specified
reference path, shown in Fig. 9. We compared the
performance of the safe tracking controller with
fixed control gain k, = 1 versus with the adap-
tive control gain in (18). With the adaptive control
gain, the robot speeds up faster in straight lines
and keeps a low speed in turns, finishing the task
in less time compared to fixed control gain design.

6.4 Baseline Comparison

In this section, we compare EAST with the EVA-
Planner (Quan et al., 2021), which solves the
safe tracking problem via two-layer hierarchical
MPC. In the first layer, the EVA-Planner refines a
planned path utilizing a low-order approximation
of the robot’s motion model. This refined path is
then used to define the cost function in the second
layer, which considers tracking error, safety con-
straints, and dynamics feasibility. All constraints
are encoded in the cost function, leading to an
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emmemnennaos

- Obstacles
== Planning Path
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Finished Time:
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Finished Time:
] 20.84 secs

DR 4

Fig. 9: Simulation of our safe tracking controller
in a C-shape environment with reference path
shown as a black dashed line and start and goal
denoted by a red and green star, respectively. The
colored curve represents the actual robot trajec-
tory with control gain shown by gradient color
corresponding to the side color bar.

unconstrained, nonlinear, non-convex optimiza-
tion problem, which is solved by a gradient-based
numerical solver. We carried out two experiments
to compare the methods with emphasis on safety
and stability, respectively.

Ten Point Test. This test evaluates the
safety of EAST and the EVA-Planner in a
static environment. Ten feasible goal points were
selected in a simulated Gazebo environment, as



shown in Fig. 10. In each trial, the robot was
tasked to reach one of these predetermined goals
without any prior knowledge of the environment.
The experiment was repeated ten times, so all the
goal points were tested.

The results in Fig. 10 show that EAST can
reach all ten goals safely, while the EVA-Planner
fails to reach one. Since the EVA-Planner encodes
the safety constraint in the cost function, solu-
tions to its optimization problem do not guarantee
safety, and the output trajectory goes through
obstacles during our test. In contrast, EAST guar-
antees safety via Prop. 4 as long as the planned
path p is in the interior of the free space and the
robot is sufficiently close to the start of the path
initially.

Maze Test. This test evaluates the stabil-
ity of EAST and the EVA-Planner in a static
environment. A maze-like simulated environment
was created, shown in Fig. 11, with the objec-
tive of going from a start position at the origin
to a goal position at (6,6) in the maze center. To
accomplish this task, the robot must go through
corridors that become narrower from the outer
(about 3 m wide) to the inner (less than 1 m wide)
part of the environment.

In Fig. 11, the left plot shows the trajec-
tory generated by the EVA-Planner and the right
plot shows the trajectory generated by our EAST
method. Our method accomplishes this task suc-
cessfully while adapting its speed according to the
local environment geometry, i.e., moving faster
when the corridor is wide and slower when it
becomes narrower. In contrast, the EVA-Planner
cannot handle this task. The robot fails to adjust
its speed as the corridor becomes narrower, which
leads to oscillatory motion and eventually a safety
violation. This oscillatory behavior arises from
the gradient-based safety metric employed by
the EVA-Planner, which continuously attempts
to push the robot away from nearby obstacles.
Consequently, within a narrow corridor, when
the robot is repelled from one side, it rapidly
approaches the opposite side, causing a repeated
cycle of oscillations. This back-and-forth behavior
persists until a safety violation occurs.
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6.5 Hardware Evaluation in
Cluttered Static Environment

This experiment tests the safety and stability of
EAST in a real environment of size 40 x 20 m,
containing static obstacles of different sizes, such
as robots, boxes, desks, etc., as shown in Fig. 12a-
12c.

During this experiment, a few goals in
unknown regions are specified, and the robot is
required to navigate autonomously. The robot has
no prior knowledge of the environment and is
expected to reach each goal without collisions. A
first-person video captured by the onboard camera
of the robot can be found in the supplementary
material.

The experiment is visualized in Fig. 12, where
the final obstacle clearance cost map is depicted
in Fig. 12d. Three local scenes (marked in green
boxes) are shown in the top row, with associated
quantitative results below each of them. The robot
navigates adaptively, slowing down when enter-
ing obstacle-dense areas and speeding up when in
wide open spaces, as shown in Fig. 12a-12c. From
Fig. 12b, we can see that the speed of the robot
(orange curve) is higher when the distance to the
inflated obstacle space (green line) is larger, and
the adaptive control gain (purple curve) increases
when the robot heading is aligned with the local
environment.

6.6 Evaluation in Dynamic
Environments

This section evaluates the safety and stability
of EAST in dynamically changing environments.
The robot is assumed to know the position and
velocity of the moving obstacles. In the simu-
lated experiments, the trajectories of the moving
obstacles were pre-specified with position and
velocity known to the robot. In the hardware
experiments, a Vicon motion capture system was
used to track the position and velocity of human
actors and transmit the motion information to the
robot using a wireless network. In practice, this
information can be obtained from object detec-
tion and tracking using visual or LIDAR sensors.
The control parameters used in this section are
summarized in Tab. 4.
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Fig. 10: EAST and EVA-Planner
(Quan et al., 2021) navigating to
randomly selected goals in simu-
lation. The successful and unsuc-
cessful goal executions are shown
in green and red, respectively.
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Fig. 11: Adaptivity test in the maze environment. The start and the
goal are denoted by a red and green star, respectively. The left figure
presents the results produced by the EVA-Planner method, while the
right figure displays the results obtained using our EAST method.
The colored curve represents the actual robot trajectory with the
robot to the inflated obstacle space d(p, Q") shown by gradient color

corresponding to the side color bar. The tracking velocity profiles are
shown as magenta arrows perpendicular to the robot trajectories.

Table 4: Control gain parameters used in
the dynamic environment simulations.

Parameter | kg ky | ko Vi Q| g2
Value 20| 20 | 5.0 | 0.15 1 1
Simulation experiment. We evaluated

EAST in a simulated dynamically changing envi-
ronment, containing four static obstacles and six
moving obstacles (light gray circles) of different
sizes and velocities, shown in Fig. 13a-13c. Each
moving obstacle follows a pre-specified path (gray
dashed lines). The robot is required to reach a
goal location without collisions with either static
or moving obstacles.

The results of this experiment can be found in
Fig. 13. The robot is able to reach the goal suc-
cessfully without collisions. The three snapshots
in Fig. 13 show interactions between the robot
and the moving obstacles. The robot deviates
from its planned trajectory to avoid collisions with
the moving obstacles effectively and subsequently
returns to its original path once the obstructions
are no longer present.

Hardware experiment. Finally, we evalu-
ated the safety and stability of EAST in a real,
dynamically changing environment. The exper-
iment setup is shown in Fig. 14 with static

15

obstacles (boxes, walls, pillars, etc.) and mov-
ing obstacles (two human pedestrians wearing
helmets). The robot does not have prior informa-
tion about this environment, except for receiving
moving obstacle positions and velocities from the
Vicon system. The robot is required to visit three
pre-specified goal states and return to the start
state without any collision.

The quantitative results from this experiment
are shown in Fig. 14c. We observe that our method
successfully executes the experiment. During the
test, the planner failed to adapt to the pedestri-
ans due to its low re-planning frequency, and the
robot made multiple deviations from the planned
path to avoid moving obstacles. This stems from
the planner’s dependence on an occupancy map,
which is not updated sufficiently fast to capture
changes in a timely manner. Consequently, safe
navigation in dynamic settings cannot rely solely
on the planned path. The control algorithm plays
a critical role in departing from the nominal path
whenever strict adherence would place the robot
in unsafe states.

Both the simulation and hardware experiments
demonstrate that our EAST method is able to
successfully handle static and dynamic obstacles
by optimizing the reference governor behavior in
real time. Our QCQP optimization of the refer-
ence governor input with CBF constraints captur-
ing the dynamic obstacles demonstrates several



=== zero line

%

=== zero line
10 y 10
|
05 05

— d(Mm, Q%)
v
—— d(p.Q*) 20

— ky

— dm, Q%)
v
— d(p.Q*)
15 — kv

=== zero line

" Time (seconds)
(a) Scene 1: Going from wide-open
area to cluttered region.

B 250
Time (Seconds)

(b) Scene 2: Going through narrow
aisle with obstacles.

240 250

ES ED E
Time (Seconds)

(c) Scene 3: Passing from one region
to another through narrow gap.

(d) Obstacle clearance cost map with cost values from high to low shown as red, yellow, blue, and white.

Fig. 12: Hardware experiment in large lab environment (about 40 m x 20 m). Three representative
scenes, shown in (a)-(c), are marked on the final obstacle clearance cost map (d) using green regions. The
distance from the motion prediction set to the inflated obstacle space d(M, QT), the robot linear velocity
v, the distance from the robot to the inflated obstacle space d(p,2"), and the adaptive control gain k,

are plotted beneath each scene.

advantages. First, imposing the CBF constraint
on the simpler reference-governor dynamics sub-
stantially lowers the computational load of the
online optimization, enabling real-time adaptation
to moving obstacles. Second, the reference signal
is altered only when its direct execution would
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compromise safety, thereby preserving the nom-
inal stability of the original reference governor
formulation with minimal degradation. Moreover,
by decoupling path-tracking control from safety
enforcement and confining the complex safety
constraints to the reference-governor dynamics,
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Fig. 13: Snapshots (a)-(c) from simulation with six dynamic obstacles with different sizes and speeds,
shown as gray circles. The pre-specified paths for the moving obstacles are depicted using gray dashed
lines. The start and goal locations for the robot are shown by a red and green star, respectively. The robot
is represented as a yellow circle. The robot’s reference path is shown as a black dashed line. The actual
robot trajectory is shown as a green solid line with purple arrows indicating its heading. The governor
position g, governor input ug, and modified governor input 1, are shown by blue, red, and green dots,

respectively.

our formulation is readily transferable to robot
platforms with different system dynamics.

7 Conclusion

This paper presented an environment-aware safe
tracking controller using a reference governor
design to enforce safety in dynamic environ-
ments. Our control design separates path track-
ing from safety constraint enforcement using a
reduced-order reference governor system. Using
prior results, we defined a local safe zone for
the robot-governor system as the set of gover-
nor inputs where the reachable set of the robot
remains outside the obstacle set. While choosing
governor inputs in the local safe zone guaran-
tees static obstacle safety, our key contribution
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is to optimize the governor input to also sat-
isfy CBF constraints capturing dynamic obstacles.
The resulting convex QCQP optimization can be
solved in real-time, enabling fast adaptation in
dynamic environments. The method guarantees
safety in static environments, while in dynamic
environments safety is maintained only when the
QCQP is feasible. We analyzed the feasibility
of the optimization problem in Sec. 5.2.2 and
discussed how our method can be applied to a
broader class of systems in Sec. 5.3. Our con-
troller outperformed a baseline method in sim-
ulation and demonstrated safety, efficiency, and
fast adaptation to moving obstacles in several real
environments. Future work will focus on extending
our adaptive reference governor design to robots
with more complex dynamics, such as mobile
manipulators.
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Fig. 14: Hardware experiment with Jackal robot and two pedestrians, serving as moving obstacles. The
actors’ positions are captured by a Vicon motion capture system and passed to the robot over a WiFi
network. The robot re-plans its path at 10 Hz online to reach different goals while avoiding the pedestrians
crossing its path. The three goals are marked as green circles, and the origin is marked as a red circle
in (a). The robot and helmets worn by the pedestrians are shown in (b). Quantitative results from the
experiment are shown in (c). Please refer to the supplementary material for a video from the experiment.
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