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Abstract
We introduce a novel method for mobile robot navigation in dynamic, unknown environments, leveraging onboard
sensing and distributionally robust optimization to impose probabilistic safety constraints. Our method introduces
a distributionally robust control barrier function (DR-CBF) that directly integrates noisy sensor measurements and
state estimates to define safety constraints. This approach is applicable to a wide range of control-affine dynamics,
generalizable to robots with complex geometries, and capable of operating at real-time control frequencies. Coupled
with a control Lyapunov function (CLF) for path following, the proposed CLF-DR-CBF control synthesis method
achieves safe, robust, and efficient navigation in challenging environments. We demonstrate the effectiveness and
robustness of our approach for safe autonomous navigation under uncertainty and dynamic obstacles in simulations
and real-world experiments with differential-drive robots.
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1 Introduction

Ensuring real-time, high-frequency robot control with
safety guarantees in dynamic and unstructured environ-
ments is crucial for the effective deployment of autonomous
mobile robots. Khatib (1986) introduced the seminal artifi-
cial potential fields approach to enable collision avoidance
for real-time control of mobile robots. This concept has
inspired a wealth of research into the joint consideration of
path planning and control, including navigation functions
(Rimon and Koditschek 1992), dynamic windows (Fox
et al. 1997), and velocity vector fields (De Lima and Pereira
2013). However, many joint planning and control works
typically rely on accurate map representations (Oleynikova
et al. 2017; Herbert et al. 2017; Arslan and Koditschek
2019; Brito et al. 2019; Schaefer et al. 2021; Kondo et al.
2023; Liu et al. 2023a) updated from onboard sensing
to facilitate safe autonomous navigation. In practice, this
reliance creates computational bottlenecks, as high-level
planning and map updates often occur at lower frequencies
and may not adequately account for the uncertainties inher-
ent in high-frequency control (Fox et al. 1997; Corke et al.
2000; Frazzoli et al. 2002; Huang and Grizzle 2023).

Certificate functions have been introduced as powerful
tools to assert properties of dynamical systems, such as
stability and safety. Among these, Lyapunov functions

(Artstein 1983; Sontag 1989) guarantee asymptotic stability
for dynamical systems, while barrier functions (Prajna
and Jadbabaie 2004) certify forward invariance for desired
safe sets. In recent years, control barrier functions (CBFs)
have marked a significant advancement in encoding
safety constraints for dynamical systems. In conjunction
with control Lyapunov functions (CLFs), safe and stable
controllers can be synthesized online for control-affine
systems via quadratic programming (QP) (Ames et al.
2019). Due to their computational efficiency and formal
guarantees, the CLF-CBF QP framework has become a
mainstream approach for synthesizing safe and stable
controls for various robot systems (Desai and Ghaffari
2022; Choi et al. 2023; Li et al. 2023; Liu et al. 2023b).

However, conventional CBF-based methods commonly
assume exact knowledge of robot states, precise system
dynamics, and accurate CBF representations. These
assumptions rarely hold in practice due to compounded
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uncertainties from sensor noise, model inaccuracies, and
errors in state estimation. Such uncertainties can degrade
theoretical safety guarantees and limit practical robustness.
Recent approaches have focused on mitigating these issues
by estimating CBFs directly from onboard measurements
in unknown environments (Long et al. 2022; Xiao et al.
2022; Abdi et al. 2023; Hamdipoor et al. 2023; Abuaish
et al. 2023). Nevertheless, these techniques rely heavily on
accurate localization and simplified robot geometries, and
typically involve computationally intensive environment
reconstruction processes from sensory data.

Motivated by these critical limitations, we propose a
novel formulation that leverages distributionally robust
optimization (DRO) (Esfahani and Kuhn 2018) to explicitly
and efficiently handle multiple realistic uncertainty sources
in safe robot navigation. Our distributionally robust control
barrier function (DR-CBF) approach directly integrates
uncertain sensor measurements and state estimates into
safety constraints without requiring precise environmental
reconstruction or explicit uncertainty quantification. By
using noisy CBF samples within the DRO framework, our
formulation significantly enhances the robustness of safe
robot navigation in complex, dynamic real-world scenarios.
The main contributions of this paper are as follows.

• We develop a novel distributionally robust control
barrier function (DR-CBF) formulation that provides
probabilistic safety guarantees by explicitly handling
uncertainties in sensor measurements and state
estimation;

• Coupling the safety constraint with a control
Lyapunov function (CLF), we introduce a CLF-
DR-CBF quadratic program for synthesizing safe
stabilizing controls for general nonlinear control-
affine systems;

• Our approach leverages onboard sensor data and state
estimates directly as noisy CBF samples, eliminating
the need for precise environmental reconstruction and
uncertainty quantification;

• We validate the safety, efficiency, and robustness of
our approach in simulated and real experiments with
autonomous differential-drive robots navigating in
unknown and dynamic environments, illustrated in
Fig. 1. An open-source implementation of our CLF-
DR-CBF controller is available on our project page*.

2 Related Work
This section reviews related work on dynamic obstacle
avoidance, distributionally robust optimization, and CLF-
CBF techniques for safe stabilizing control.

Dynamic obstacle avoidance. Robot motion planning
algorithms have a rich history, dating back to the

(a) Indoor environment (b) Outdoor environment

Figure 1. ClearPath Jackal robot equipped with a LiDAR
sensor navigating in unknown environments.

1950s with the introduction of the Dijkstra (Dijkstra
1959) and A∗ (Hart et al. 1968) algorithms for search-
based planning. Since then, a substantial amount of
research has been dedicated to algorithms for motion
planning and trajectory tracking control (Lozano-Perez
1983; Corke et al. 2000; Frazzoli et al. 2002; Huang
and Grizzle 2023). A significant contribution was made
by Khatib (1986), who introduced artificial potential
fields to enable collision avoidance during not only the
motion planning stage but also the real-time control
of a mobile robot. The formulation was extended to a
virtual force field (Borenstein et al. 1991), facilitating
safe navigation in uncertain environments. Rimon and
Koditschek (1992) developed navigation functions, a
particular form of artificial potential functions, which
simultaneously ensure collision avoidance and stabilization
to a goal configuration. The dynamic window concept was
introduced by Fox et al. (1997) to handle dynamic obstacles
by proactively filtering out unsafe control actions. More
recently, Bajcsy et al. (2019) leveraged Hamilton-Jacobi
reachability for autonomous navigation, providing provable
safety guarantees in unknown static environments while
enabling real-time updates from sensor measurements and
accommodating general nonlinear dynamics and planners.
In the domain of safe motion planning for dynamic
environments, various methods have been developed to
handle uncertainties such as obstacle locations (Liu et al.
2023a), human behavior prediction (Schaefer et al. 2021),
and localization errors (Summers 2018). Meanwhile,
reinforcement learning techniques have advanced real-time
autonomous navigation (Pfeiffer et al. 2018; Everett et al.
2021; Chen et al. 2022), often formulating the problem as
a partially observable Markov decision process to enable
model-free learning of control policies.

∗Project page: https://existentialrobotics.org/DRO Safe Navigation/
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Many of these methods require knowledge or estimation
of the environment geometry and dynamics, typically in
the form of topological (Dudek et al. 1978) or metric
(Chatila and Laumond 1985; Borenstein et al. 1991) map
representations. The signed distance function (SDF) has
emerged as a particularly valuable tool in this regard
(Oleynikova et al. 2017; Han et al. 2019; Wu et al. 2023),
offering distance and gradient information for safe control
and navigation. However, constructing occupancy or SDF
maps at control frequency is challenging in complex and
dynamic environments.

Distributionally robust optimization. Distributionally
robust optimization (DRO) considers parameter uncertainty
in optimization problems, and is particularly effective when
only a limited number of uncertainty samples are available.
The method compensates for the potential discrepancy
between empirical and true uncertainty distributions by
utilizing uncertainty descriptors like moment ambiguity
sets (Van Parys et al. 2016), Kullback–Leibler ambiguity
sets (Jiang and Guan 2016), and Wasserstein ambiguity
sets (Esfahani and Kuhn 2018; Xie 2021). The DRO
framework has been increasingly utilized for its robust
performance guarantees against distributional uncertainty
in control (Boskos et al. 2024; Mestres et al. 2024a; Long
et al. 2023a; Chriat and Sun 2024) and robotics (Ren and
Majumdar 2022; Coulson et al. 2021; Ryu and Mehr 2024).

Lathrop et al. (2021) developed a Wasserstein safe
variant of RRT, offering finite-sample probabilistic safety
guarantees. A DRO approach was introduced by Ren
and Majumdar (2022) to enhance policy robustness by
iteratively training with adversarial environments generated
through a learned generative model. Long et al. (2023b)
proposed a DRO formulation for safe stabilizing control
under model uncertainty, assuming that nominal safety
and stability certificates are provided. Hakobyan and Yang
(2022) introduced a distributionally robust risk map as a
safety specification tool for mobile robots, reformulating
optimal control problem over an infinite-dimensional
probability distribution space into a tractable semidefinite
program. Boskos et al. (2023) proposed a distributionally
robust coverage control algorithm for a team of robots
to optimally deploy in region with an unknown event
probability density. A Wasserstein tube MPC is presented
in Aolaritei et al. (2023) for stochastic systems, which
utilizes Wasserstein ambiguity sets to construct tubes
around nominal trajectories, enhancing robustness and
efficiency with limited noise samples available. Compared
to existing applications of DRO in robotics and control,
our work explicitly incorporates multiple realistic sources
of uncertainty, including noisy sensor measurements and
state estimation errors, into a unified distributionally robust
control barrier function (DR-CBF) formulation. Crucially,
we ensure that the resulting safety constraints remain

convex, preserving computational tractability and enabling
efficient real-time control synthesis.

Safe stabilizing control. Quadratic programming that
integrates CLF and CBF constraints offers an efficient
approach for synthesizing safe stabilizing control inputs
for multi-robot navigation (Zhang et al. 2023), legged
locomotion (Grandia et al. 2021), and humanoid operation
(Khazoom et al. 2022). Despite the efficiency of the
CLF-CBF QP in synthesizing safe stabilizing controls,
it typically relies on perfect knowledge of system
dynamics, state estimates, and barrier function constraints.
However, in many robotics applications, various sources
of uncertainty can significantly impact performance and
reliability. Some recent studies have begun to explore this
area, to address uncertainty in system dynamics (Dhiman
et al. 2023; Emam et al. 2022), state estimates (Daş and
Murray 2022; Wang and Xu 2023), and barrier function
constraints (Long et al. 2021; Hamdipoor et al. 2023).
These approaches typically utilize robust and probabilistic
models to integrate uncertainty into the QP formulation,
leading to convex reformulations that enhance robustness.

Particularly in safe robot navigation, a robot might
need to estimate barrier functions based on its (noisy)
observations. Long et al. (2021) introduced an incremental
online learning approach for estimating the barrier
function from LiDAR data and proposed a robust
reformulation of the CLF-CBF QP by incorporating
estimation errors. Majd et al. (2021) integrate time-based
rapidly-exploring random trees (RRTs) with CBFs to
enable safe navigation in dynamic environments densely
populated by pedestrians. Dawson et al. (2022) developed
an approach to learn observation-space CBFs utilizing
distance data and proposed a two-mode hybrid controller
to avoid deadlocks in navigation. A reactive planning
algorithm was presented in Liu et al. (2023b) for the
safe operation of a bipedal robot with multiple obstacles,
utilizing a single differentiable CBF derived from LiDAR
point clouds. Abdi et al. (2023) proposed a method for
learning vision-based CBF from RGB-D images with pre-
training, enabling safe navigation of autonomous vehicles
in unseen environments. By effectively decomposing and
predicting the spatial interactions of multiple obstacles, Yu
et al. (2023) proposed compositional learning of sequential
CBFs, enabling obstacle avoidance in dense dynamic
environments. Keyumarsi et al. (2024) introduced an
efficient Gaussian Process-based method for synthesizing
CBFs from LiDAR data, showcasing its effectiveness in
a turtlebot navigation task. Zhang et al. (2024) introduced
an efficient LiDAR-based framework for goal-seeking and
exploration of mobile robots in dynamic environments,
utilizing minimum bounding ellipses to represent obstacles
and Kalman filters to estimate their velocities.
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Conformal Prediction. A related line of research to our
work is the application of conformal prediction in robot
navigation tasks. Conformal prediction (Shafer and Vovk
2008; Zhao et al. 2024) is a statistical tool for uncertainty
quantification that provides valid prediction regions with a
user-specified risk tolerance, making it particularly useful
for ensuring safety in dynamic environments. Several recent
works have explored the integration of conformal prediction
into motion planning and control frameworks. Lindemann
et al. (2023) used conformal prediction to obtain prediction
regions for a model predictive controller. Yang et al.
(2023) employed conformal prediction to quantify state
estimation uncertainty and design a robust CBF controller
based on the estimated uncertainty. An adaptive conformal
prediction algorithm was developed by Dixit et al. (2023)
to dynamically quantify prediction uncertainty and plan
probabilistically safe paths around dynamic agents.

3 Preliminaries
This section introduces our notation and offers a brief
review of CLF-CBF QP.

3.1 Notation
The sets of real, non-negative real, and natural numbers
are denoted by R, R≥0, and N, respectively. For N ∈ N,
we write [N ] := {1, 2, . . . N}. We denote the distribution
and expectation of a random variable Y by P and EP(Y ),
respectively. We use 0 and 1 to denote the vector with all
entries equal to 0 and 1, respectively. For a scalar x, we
define (x)+ := max(x, 0). We denote by In ∈ Rn×n the
identity matrix. For a scalar x and y, we use atan2(y, x) to
denote the angle between the positive x-axis and the point
(x, y) in radians. The interior and boundary of a set C ⊂ Rn

are denoted by Int(C) and ∂C. For a vector x, the notation
|x| represents its element-wise absolute value, while ∥x∥1,
∥x∥, and ∥x∥∞ denote its L1, L2, and L∞ norms,
respectively. The gradient of a differentiable function V :
Rn → R is denoted by ∇V , while its Lie derivative along a
vector field f : Rn → Rn is LfV = ∇V ⊤f . A continuous
function α : [0, a) → [0,∞) is of class K if it is strictly
increasing and α(0) = 0. A continuous function α : R → R
is of extended class K∞ if it is strictly increasing, α(0) = 0,
and limr→∞ α(r) = ∞. The special orthogonal group of
dimension p is denoted by SO(p), which is defined as the
set of all p× p orthogonal matrices with determinant equal
to 1: SO(p) = {R ∈ Rp×p | R⊤R = Ip,det(R) = 1}.

3.2 CLF-CBF Quadratic Program
Consider a non-linear control-affine system,

ẋ = f(x) + g(x)u = [f(x) g(x)]

[
1
u

]
=: F(x)u, (1)

where x ∈ X ⊆ Rn is the state, u ∈ Rm is the control
input, and f : Rn → Rn and g : Rn → Rn×m are locally
Lipschitz continuous functions.

The notion of a control Lyapunov function (CLF) (Art-
stein 1983; Sontag 1989) plays a key role in certifying the
stabilizability of control-affine systems.

Definition 3.1. A continuously differentiable function V :
Rn → R is a control Lyapunov function (CLF) on X for
system (1) if V (x) > 0, ∀x ∈ X \ {0}, V (0) = 0, and

inf
u∈Rm

CLC(x,u) ≤ 0, ∀x ∈ X , (2)

where CLC(x,u) := LfV (x) + LgV (x)u+ αV (V (x)) is
the control Lyapunov constraint (CLC) defined for some
class K function αV .

To facilitate safe control synthesis, we consider a time-
varying set C(t) defined as the zero superlevel set of a
continuously differentiable function h : X × R≥0 → R:

C(t) := {x ∈ X : h(x, t) ≥ 0} (3)

Safety of the system (1) can then be ensured by keeping the
state x within the safe set C(t).

Definition 3.2. A continuously differentiable function h :
Rn × R≥0 → R is a time-varying control barrier function
(TV-CBF) on X ⊆ Rn for (1) if there exists an extended
class K∞ function αh with:

sup
u∈U

CBC(x,u, t) ≥ 0, ∀ (x, t) ∈ X × R≥0, (4)

where the control barrier constraint (CBC) is:

CBC(x,u, t) := ḣ(x, t) + αh(h(x, t)) (5)

= Lfh(x, t) + Lgh(x, t)u+
∂h(x, t)

∂t
+ αh(h(x, t)).

Definition 3.2 allows us to consider the set of control
values KCBF(x, t) := {u ∈ Rm : CBC(x,u, t) ≥ 0} that
render the set C(t) forward invariant.

Definition 3.3. Let t0 be a fixed initial time. A time-varying
set C(t) is said to be forward invariant under control law
u : [t0,∞) → Rm if, for any initial state x0 ∈ C(t0), there
exists a unique maximal solution x : [t0, t1) → Rn to the
system dynamics in (1) with x(t0) = x0, such that x(t) ∈
C(t) for all t ∈ [t0, t1).

Suppose we are given a baseline feedback controller
u = k(x) and we aim to ensure the safety and stability of
the control-affine system (1). By observing that both the
stability and safety constraints in (2), (4) are affine in the
control input u, a quadratic program (Ames et al. 2017) can
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be formulated to synthesize a safe stabilizing controller:

(u(x, t), δ) ∈ argmin
u∈Rm,δ∈R

∥u− k(x)∥2 + λδ2,

s.t. CLC(x,u) ≤ δ,CBC(x,u, t) ≥ 0,
(6)

where δ denotes a slack variable that relaxes the CLF
constraint to ensure feasibility of the QP, controlled by the
scaling factor λ > 0. As discussed in Ames et al. (2017);
Mestres et al. (2023), if the CBF h has relative degree of 1
with respect to the system dynamics in (1), the controller in
(6) is Lipschitz continuous in x and piecewise continuous
in t. This guarantees unique solutions for the closed-
loop system, ensuring the safe set C(t) remains forward
invariant. However, a few practical limitations should be
noted: (a) the use of the slack variable δ relaxes the strict
satisfaction of the CLF stability constraint, creating a trade-
off between safety and stability that depends on the design
of the safe set; (b) in numerical implementations, the CBF-
QP must be solved at a fixed rate, whereas the theoretical
guarantees are valid for executions in continuous time; and
(c) while the CBF-QP is generally feasible, it may become
infeasible if input constraints limit the available control
actions. Researchers have proposed methods to address
these challenges, including employing Input-Constrained
Control Barrier Functions (ICCBFs) (Agrawal and Panagou
2021), using neural network-based CBFs to account for
input saturation (Liu et al. 2023c), and tuning of the class
K∞ functions (Parwana et al. 2022).

4 Problem Formulation
We consider a mobile robot that relies on noisy
range measurements to traverse an unknown dynamic
environment towards a desired goal. The robot’s motion is
governed by control-affine dynamics as in (1). Let ϕ : X →
Rp be the mapping that projects the robot’s state x to its
position vector ϕ(x) ∈ Rp. We denote the robot orientation
as R(x) ∈ SO(p).

Let B0 ⊂ Rp represent the robot’s shape in its local
coordinate frame, i.e., when the robot is at the origin with
no rotation or velocity. To describe the shape of the robot
in a general state x, we introduce the following linear
transformation:

B(x) = A(x)B0 + b(x), (7)

where A : Rn → Rp×p maps the robot’s state x to an
invertible transformation matrix (e.g., rotation), and b :
Rn → Rp defines the translation, both being continuously
differentiable.

We use a signed distance function (SDF) to describe
the robot’a shape. Let S ⊂ Rp be a closed set. The signed
distance function d : Rp → R computes the signed distance

from a point q ∈ Rp to the set boundary ∂S:

dS(q) =

− min
q∗∈∂S

∥q− q∗∥, if q ∈ S,

min
q∗∈∂S

∥q− q∗∥, if q /∈ S.
(8)

This SDF provides a measure of how far a point q is from
the set S. The function takes negative values for points
inside S, positive values for points outside, and is zero on
the boundary ∂S.

When the set S represents the robot’s body B(x), we call
its signed distance function the robot SDF. To express the
SDF of the robot’s body in terms of its reference shape B0,
we apply the linear transformation in (7):

d(B(x),q) = dB0

(
A(x)−1(q− b(x))

)
, (9)

where dB0
(·) is the SDF of the reference shape B0.

Closed-form robot SDF expressions are available for simple
geometries (e.g., circles, spheres) and can be approximated
using feed-forward neural networks for more complex
geometries (Park et al. 2019; Koptev et al. 2023).

The robot is equipped with a range sensor (e.g.,
LiDAR) mounted at a fixed position and orientation in
the robot’s body frame. The sensor emits multiple rays,
each corresponding to a direction in the sensor’s field of
view, and generates distance measurements along these
rays. The measurements are subject to additive noise,
modeled as η(ϕ(x),R(x)) = η̄(ϕ(x),R(x)) + n, where
η̄(ϕ(x),R(x)) represents the true distances, and n is the
noise vector, assumed to be bounded and independent for
each ray. The resulting noisy measurements are denoted
as η(ϕ(x),R(x)) = [η1, . . . , ηK ]⊤ ∈ [ηmin, ηmax]

K , where
K denotes the number of rays per sensor observation,
and ηmin, ηmax denote the sensor’s minimum and maximum
range, respectively.

The environment includes both static and dynamic
obstacles. Let the obstacle set at the initial time t = 0
be represented as O0 ⊂ Rp. At any time t, the obstacle
space O(t) ⊂ Rp is obtained by applying a smooth
transformation to the initial obstacle set:

O(t) = AO(t)O0 + bO(t), (10)

where AO : R → Rp×p is a time-dependent transformation
function mapping time t to an unknown transformation
matrix, and bO : R → Rp is a time-dependent translation
function. To ensure smooth changes in the environment,
we assume that both AO and bO are continuously
differentiable, preventing obstacles from experiencing
sudden jumps, expansions, or contractions. Additionally,
obstacles are assumed to have finite thickness, bounded
velocities and accelerations, and smooth boundaries to
ensure reliable detection.

At time t, the boundary of the obstacle space ∂O(t) is
estimated from the noisy sensor measurements η. The free
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Figure 2. Overview of our approach for safe robot navigation
in unknown dynamic environments. The system consists of
three main components: (1) localization and mapping, (2) path
planning, and (3) control. The contribution of this work lies in
the control component, where a novel distributionally robust
control barrier function is used to ensure safety in real-time,
directly utilizing sensor data, and a control Lyapunov function
is used to navigate cluttered and dynamic environments.

space, where the robot can operate safely, is the open set
F(t) = Rp \ O(t).

Problem Consider a mobile robot with dynamics given by
(1), equipped with a range sensor, operating in an unknown
dynamic environment. Design a control policy that drives
the robot safely and efficiently to a desired goal position
qG ∈ Rp. The policy must ensure that the robot’s body
remains within the free space, i.e., B(x(t)) ⊂ F(t) for all
t ≥ 0, while accounting for uncertainties in sensing and
state estimation.

5 System Overview
This section describes the methods we use for localization
and mapping, path planning, and control to enable safe
robot navigation, Fig. 2 presents an overview of the
robot autonomy components. Our contribution is the
control method, which includes a distributionally robust
time-varying control barrier function to guarantee safety
in dynamic environments, presented in Sec. 6, and a
control Lyapunov function for stable path-following control
introduced in Sec. 7.

Localization and Mapping. The robot is equipped with
a LiDAR scanner and uses the Hector SLAM algorithm
(Kohlbrecher et al. 2011) to estimate its pose and build an
occupancy map of the environment. We emphasize that the
efficiency and accuracy of the constructed occupancy map
may not be sufficient to ensure safe navigation in a dynamic
environment. We use the map for high-level path planning
and employ a low-level controller to guarantee safe tracking
using CLF and CBF techniques.

Path Planning. We use the A∗ planning algorithm (Hart
et al. 1968) to generate a path γ : [0, 1] 7→ Rp from the
robot’s current position ϕ(x) ∈ Rp to the goal qG ∈ Rp.
The path γ(s) is parametrized by a scalar s ∈ [0, 1] such

that γ(0) = ϕ(x) and γ(1) = qG. As the robot navigates
through the environment, the map is continuously updated
by the SLAM algorithm and the path is continuously
replanned to adapt to changes in the map.

Control. Our control approach simultaneously guaran-
tees the robot’s tracking of the planned path γ and its safety
from collisions in the dynamically changing environment.
In Sec. 6, we develop a distributionally robust CBF that uses
noisy distance measurements and estimated robot states
to directly to guarantee safety with respect to dynamic
obstacles. In Sec. 7, we develop a CLF to track the path
γ with stability guarantees.

6 Distributionally Robust Safe Control
In this section, we present a distributionally robust
control barrier function (DR-CBF) formulation that enables
real-time safety guarantees in cluttered and dynamic
environments by utilizing sensor data directly. This
formulation is applicable to general control-affine systems
(1), as introduced in Sec. 4.

We consider a CBF h(x, t) with super zero-level set
C(t) = {x ∈ X | h(x, t) ≥ 0} that satisfies

C(t) ⊆ {x ∈ X | B(x(t)) ⊆ F(t)},

where B(x(t)) represents the robot’s body at state x(t),
and F(t) is the free space at time t. This establishes
a connection between the CBF h and the environment
geometry. To develop the DR-CBF formulation, we make
the following assumption on the unknown CBF.

Assumption 6.1. The CBF h has a uniform relative degree
of 1 with respect to the system dynamics (1), i.e., the time
derivative of h(x, t) along (1) depends explicitly on the
control input u.

Under Assumption 6.1, we can write the control barrier
constraint associated with h(x, t) as:

CBC(x,u, t) = (11)

[∇xh(x, t)]
⊤F(x)u+

∂h(x, t)

∂t
+ αh(h(x, t)) =

[∇xh(x, t)
⊤F(x), αh(h(x, t)),

∂h(x, t)

∂t
]︸ ︷︷ ︸

ξ⊤(x,t)

u1
1

 ≥ 0,

where we define an uncertainty vector ξ(x, t) ∈ Rm+3,
containing the elements of the time derivative of the barrier
function, for each (x, t) ∈ X × R. Since the environment is
unknown and both the sensor measurements and the robot
state estimates are noisy, ξ cannot be determined exactly.

Our formulation addresses uncertainties arising from
both the barrier function h and the state estimations x.
Unlike existing robust or probabilistic CBF approaches,
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which often focus on uncertainties in system dynamics
(Clark 2019; Long et al. 2022; Dhiman et al. 2023; Wang
and Xu 2023; Breeden and Panagou 2023; Das and Burdick
2024), few works tackle the challenges posed by state
estimation errors. This stems from the nonlinearity of the
dynamics model F and the barrier function h, which makes
it difficult to propagate state estimation errors in the control
barrier constraint (CBC) in (11).

Our formulation addresses this challenge by leveraging
the power of distributionally robust optimization. Instead
of explicitly propagating state estimation errors through
the system dynamics and barrier functions, we assume
access to M state samples {xj}Mj=1 from a state estimation
algorithm. These samples can be obtained, for example,
from the Gaussian distributions provided by a Kalman
filter (Kalman 1960), particles generated by a particle filter
(Djuric et al. 2003), or a graph-based localization algorithm
(Grisetti et al. 2010). The state samples, combined with
estimates of h (e.g., obtained directly from the distance
measurements η), are directly used to construct samples of
the uncertainty vector {ξi}Ni=1, as detailed in Sec. 8.3. By
managing uncertainties in ξ using distributionally robust
optimization, we ensure the satisfaction of constraint (11)
without requiring explicit error propagation.

Before introducing the control synthesis formulation,
we review the preliminaries of chance constraints and
distributionally robust optimization.

6.1 Chance Constraints and Distributionally
Robust Optimization

Consider a random vector ξ with (unknown) distribution
P∗ supported on the set Ξ ⊆ Rk. Let G : Rm × Ξ → R
define an inequality constraint G(u, ξ) ≤ 0 (e.g., the CBC
in (11)). Consider, then, the chance-constrained program,

min
u∈Rm

c(u),

s.t. P∗(G(u, ξ) ≤ 0) ≥ 1− ϵ,
(12)

where c : Rm 7→ R is a convex objective function (e.g., the
objective function in (6)) and ϵ ∈ (0, 1) denotes a user-
specified risk tolerance. Generally, the chance constraint
in (12) leads to a non-convex feasible set. To address
this, Nemirovski and Shapiro (2006) propose a convex
conditional value-at-risk (CVaR) approximation of the
original chance constraint.

Value-at-risk (VaR) at confidence level 1− ϵ for ϵ ∈
(0, 1) is defined as VaRPq

1−ϵ(Q) := infs∈R{s | Pq(Q ≤
s) ≥ 1− ϵ} for a random variable Q with distribution Pq .
As VaR does not provide information about the right tail
of the distribution and leads to intractable optimization
in general, one can employ CVaR instead, defined as
CVaRPq

1−ϵ(Q) = EPq [Q | Q ≥ VaRPq

1−ϵ(Q)]. The resulting

constraint

CVaRP∗

1−ϵ(G(u, ξ)) ≤ 0 (13)

creates a convex feasible set, which is a subset of the
feasible set in the original chance-constrained problem (12).
Additionally, CVaR can be written as the following convex
program (Rockafellar and Uryasev 2000):

CVaRP∗

1−ϵ(G(u, ξ)) := inf
s∈R

[ϵ−1EP∗ [(G(u, ξ) + s)+]− s].

(14)
The formulations in (12) and (13) require knowledge of

P∗ to be utilized. However, in many robotics applications,
usually only samples of the uncertainty ξ are available
(e.g., obtained from LiDAR distance measurements).
This motivates us to consider distributionally robust
formulations (Esfahani and Kuhn 2018; Xie 2021).

Assuming finitely many samples {ξi}i∈[N ] from the
true distribution of P∗ are available, we first describe a
way of constructing an ambiguity set of distributions that
agree with the empirical distribution. Let Pp(Ξ) ⊆ P(Ξ)
be the set of Borel probability measures with finite p-th
moment with p ≥ 1. The p-Wasserstein distance between
two probability measures µ, ν in Pp(Ξ) is defined as:

Wp(µ, ν) :=

(
inf

β∈Q(µ,ν)

[∫
Ξ×Ξ

η(ξ, ξ′)pdβ(ξ, ξ′)
]) 1

p

,

(15)
where Q(µ, ν) denotes the collection of all measures on
Ξ× Ξ with marginals µ and ν on the first and second
factors, and η denotes the metric in the space Ξ. Throughout
the paper, we take η(ξ, ξ′) = ∥ξ − ξ′∥1 and consider the
ambiguity set corresponding to the 1-Wasserstein distance.
We denote by PN := 1

N

∑N
i=1 δξi

the discrete empirical
distribution of the available samples {ξi}i∈[N ], and define
an ambiguity set, Mr

N := {µ ∈ Pp(Ξ) | Wp(µ,PN ) ≤ r},
as a ball of distributions with radius r centered at PN .

Remark 6.2. (Choice of Wasserstein ball radius):
There is a connection between the sample size N and
the Wasserstein radius r for constructing the ambiguity
set Mr

N . A distribution P is light-tailed if there
exists an exponent ρ such that A := EP[exp ∥ξ∥ρ] =∫
Ξ
exp ∥ξ∥ρP(dξ) < ∞. If the true distribution P∗ is light-

tailed, the choice of r = rN (ϵ̄) given in Esfahani and Kuhn
(2018, Theorem 3.5) is

rN (ϵ̄) =

{
( log(c1ϵ̄

−1)
c2N

)
1

max{k,2} if N ≥ log(c1ϵ̄
−1)

c2
,

( log(c1ϵ̄
−1)

c2N
)

1
ρ else,

(16)

where c1, c2 are positive constants that depend on ρ,A and
k, ensures that the ambiguity ball MrN (ϵ̄)

N contains P∗ with
probability at least 1− ϵ̄. •

Fig. 3 provides an illustration of the Wasserstein
ambiguity set and its relation to the samples, the empirical
distribution, and the true distribution.
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Figure 3. Wasserstein ambiguity set illustration. The figure
shows the relationship between the samples, empirical
distribution, true distribution, and the Wasserstein ambiguity
set. The blue squares represent the available samples from
the true distribution (yellow dot), which form the empirical
distribution (red dot). The Wasserstein ambiguity set (green
region) is constructed as a ball of distributions centered at the
empirical distribution, with a radius r that depends on the
sample size and the desired confidence level. The ambiguity
set aims to contain the true distribution with high probability.

6.2 Distributionally Robust Safety Constraint
Consistently with our exposition of DRO in the previous
section, we make the following assumption.

Assumption 6.3. At each (x, t) ∈ X × R, N samples of
the vector ξ in (11) can be obtained, denoted by {ξi}i∈[N ].

The samples {ξi}i∈[N ] can be obtained using sensor
measurements and state estimation (we discuss this in
detail in Sec. 8.3). In many robotic systems, sensing and
state estimation may operate at lower frequencies than
the control loop. For example, LiDAR measurements or
SLAM-based localization may provide updates at about 10
Hz, while the control loop may require computations at
50 Hz. Our DR-CBF formulation addresses this challenge
by incorporating samples of ξ derived from potentially
delayed or uncertain sensor data and state estimations.
By accounting for both the asynchrony and uncertainty
inherent in sensing and estimation, our approach ensures
probabilistic safe performance under realistic conditions.

Inspired by the CLF-CBF QP formulation in (6), we
consider the following distributionally robust formulation
to ensure safety with high probability:

(u(x, t), δ) = argmin
u∈Rm,δ∈R

∥u− k(x)∥2 + λδ2,

s.t. CLC(x,u) ≤ δ, (17a)
inf

P∈Mr
N

P(CBC(x,u, ξ)) ≥ 0) ≥ 1− ϵ, (17b)

where Mr
N denotes the ambiguity set with radius r around

the empirical distribution PN . The explicit time dependency
of u on t stems from the random vector ξ(x, t) in the CBF
constraint. The formulation in (17) addresses the inherent

uncertainty in the safety constraint without assuming a
specific probabilistic model for ξ. The Wasserstein radius
r defines the acceptable deviation of the true distribution of
ξ from the empirical distribution PN .

If a controller u∗(x, t) satisfies (17b), the following
result ensures that the closed-loop system satisfies a chance
constraint under the true distribution.

Lemma 6.4. (Chance-constraint satisfaction under the
true distribution): Assume the distribution P∗ of ξ is light-
tailed and the Wasserstein radius rN (ϵ̄) is set according
to (16). If the controller u∗(x, t) satisfies (17b) with r =
rN (ϵ̄), then

P∗(CBC(x,u∗(x, t), ξ)) ≥ 0) ≥ (1− ϵ)(1− ϵ̄). (18)

Proof. Consider the events A :={P∗ ∈ MrN (ϵ̄)
N } and B :=

{CBC(x,u∗(x, t), ξ)) ≥ 0}. From Esfahani and Kuhn
(2018, Theorem 3.4), we have P∗(A) ≥ 1− ϵ̄. From (17b),
we have that

inf
P∈MrN (ϵ̄)

N

P(B) ≥ 1− ϵ. (19)

Now, consider the probability of the event B under the true
distribution P∗:

P∗(B) ≥ P∗(B ∩A) = P∗(B|A)P∗(A) (20)

≥

(
inf

P∈MrN (ϵ̄)

N

P(B)

)
P∗(A) ≥ (1− ϵ)(1− ϵ̄).

Our previous work (Long et al. 2024) presents a similar
result but for a CLF in the context of stabilization.
According to Lemma 6.4, the safety of the closed-loop
system is guaranteed with high probability. However, the
optimization problem in (17) is intractable (Hota et al.
2019; Esfahani and Kuhn 2018) due to the infimum over
the Wasserstein ambiguity set. In Sec. 6.3, we discuss our
approach to identify tractable reformulations of (17) and
facilitate online safe control synthesis.

6.3 Tractable Convex Reformulation
Next, we demonstrate how the samples {ξi}i∈[N ] from
Assumption 6.3 can be used to obtain a tractable
reformulation of (17).

Proposition 6.5. (Distributionally robust safe control
synthesis): Given samples {ξi}i∈[N ] of ξ as in (11),
if (u∗, δ∗, s∗, {β∗

i }i∈[N ]) is a solution to the quadratic
program:

min
u∈Rm,δ∈R,s∈R,βi∈R

∥u− k(x)∥2 + λδ2, (21)

s.t. CLC(x,u) ≤ δ,
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r∥u∥∞ ≤ sϵ− 1

N

N∑
i=1

βi,

βi≥s−[u 1 1]⊤ξi, βi≥0, ∀i ∈ [N ],

then (u∗, δ∗) is also a solution to the distributionally robust
chance-constrained program in (17).

Proof. The safety constraint (17b) is equivalent to
supP∈Mr

N
P(−CBC(x,u, ξ) ≥ 0) ≤ ϵ. Using the CVaR

approximation of the chance constraint (13), we obtain a
convex conservative approximation of (17b):

sup
P∈Mr

N

CVaRP
1−ϵ(−CBC(x,u, ξ)) ≤ 0. (22)

From (14), this is equivalent to

sup
P∈Mr

N

inf
s∈R

[
1

ϵ
EP[(−CBC(x,u, ξ) + s)+]− s] ≤ 0. (23)

Based on Hota et al. (2019, Lemma V.8) and Esfahani
and Kuhn (2018, Theorem 6.3), with the 1-Wasserstein
distance, the following inequality is a sufficient condition
for (23) to hold:

rL(u)+ inf
s∈R

[
1

N

N∑
i=1

(−CBC(x,u, ξi) + s)+ − sϵ

]
≤0

(24)
where L(u) is the Lipschitz constant of −CBC(x,u, ξ) in
ξ. Now, from (11), we have CBC(x,u, ξ) = [u 1 1]⊤ξ.
Therefore, we can define the convex function L : Rm 7→
R>0 by

L(u) = ∥[u 1 1]⊤∥∞ = max{1, ∥u∥∞} = ∥u∥∞ (25)

The function ξ 7→ −CBC(x,u, ξ) is Lipschitz in ξ with
constant L(u). This is because the Lipschitz constant of
a differentiable affine function equals the dual norm of its
gradient, and the dual norm of the L1 norm is the L∞ norm.
Thus, the following is a conservative approximation of (17),

min
u∈Rm,δ∈R

∥u− k(x)∥2 + λδ2, (26)

s.t. CLC(x,u) ≤ δ,

rL(u)+ inf
s∈R

[
1

N

N∑
i=1

(−CBC(x,u, ξi) + s)+ − sϵ

]
≤0.

Lastly, as shown in Long et al. (2023b, Proposition IV.1),
the bi-level optimization in (26) can be rewritten
as (21).

Formally, the safe set C(t) is defined by a single CBF
h(x, t), but its value, gradient, and time derivative (defining
ξ(x, t)) are not directly known in practice. By leveraging
observations of ξ derived from sensor measurements and

state estimates, and applying Proposition 6.5, we are able
to synthesize safe controllers with distributionally robust
guarantees. Due to the convex reformulation of (17b),
our approach inherently introduces some conservatism.
However, in practice, this conservatism can be effectively
managed by tuning the Wasserstein radius r and the safety
probability ϵ. These parameters provide flexibility to adapt
the formulation based on specific application requirements,
sensor capabilities, and state estimation errors.

The Lipschitz continuity and regularity of distribution-
ally robust controllers are characterized in Mestres et al.
(2024a). Together with Lemma 6.4, this enables safe
robot control with point-wise probabilistic guarantees in
unknown dynamic environments.

Remark 6.6. (Uncertainty in System Dynamics): We
have assumed that there is no uncertainty in the system
dynamics F to simplify the presentation in Sec. 6.3.
However, our approach can be extended if this is not the
case as long as samples of F(x) are available. These
samples can be combined with samples of robot state and
h(x, t) to construct the uncertainty vector {ξi}Ni=1 and
ensure the validity of Proposition 6.5. •

7 Control Lyapunov Function Based Path
Following

In this section, we introduce a control strategy that
accurately tracks the planned path γ. This control strategy
will serve as the basis for specifying the control Lyapunov
constraint (CLC) in our distributionally robust safe control
synthesis in (21).

We begin by stating the following assumptions:

Assumption 7.1. The state space X ⊂ Rn is compact.

Assumption 7.2. Given a desired reference point q ∈ Rp,
let E(q) = {x ∈ X : ϕ(x) = q}. For each q, assume that
there exists a continuously differentiable function V : X ×
Rp → R≥0 with the following properties.

1. The function V (x) is positive definite with respect to
the error ϕ(x)− q, i.e., V (x) > 0 for all x ̸∈ E(q)
and V (x) = 0 if x ∈ E(q).

2. There exists a continuous control law û(x,q) such
that the time derivative of V along the trajectories of
the system (1) satisfies V̇ (x) < 0 for all x ̸∈ E(q).

3. For all x ∈ E(q), we have f(x) + g(x)û(x,q) = 0.

A specific construction of such a function is provided in
Sec. 8.1.

7.1 Stabilization to a Goal Position
We now establish the asymptotic stability of the goal set
E(q) for the closed-loop system dynamics (1) with control
law û(x,q).
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Lemma 7.3. (Asymptotic stability of the goal set):
Under Assumptions 7.1 and 7.2, the goal set E(q) = {x ∈
X : ϕ(x) = q} is asymptotically stable for the closed-loop
dynamics (1) under the control law û(x,q).

Proof. By Assumption 7.1, X is compact. Since E is a
closed subset of X , it follows that E(q) is also compact. In
addition, by LaSalle’s Invariance Principle (Khalil 2002),
the conditions in Assumption 7.2 imply that the closed-
loop system trajectory converges to the largest invariant
set contained in {x ∈ X : V̇ (x) = 0} ⊂ E(q). This implies
that E is asymptotically attractive too. Therefore, E(q) is
asymptotically stable for the closed-loop system dynamics
under the control law û(x,q).

Lemma 7.3 establishes that, under the control law
û(x,q) in Assumption 7.2, the position of the system in
(1) satisfies ϕ(x(t)) → q as t → ∞.

7.2 CLF-Based Path Following
Building upon the stability result in Lemma 7.3, we now
extend the position convergence to path following. Our goal
is to achieve smooth navigation by dynamically adjusting a
moving goal point along the planned path γ. Inspired by
reference governor control techniques (Garone and Nicotra
2015; Li et al. 2020), we consider a scalar g(t) ∈ [0, 1] with
dynamics:

ġ =
k

1 + ∥ϕ(x)− γ(g)∥
(1− gζ), (27)

where k ∈ R>0 is a scaling factor, and ζ ∈ N ensures
that g asymptotically approaches but never exceeds 1. The
dynamics in (27) are designed such that the reference
point γ(g) moves along the path γ at a speed inversely
proportional to the distance between the current robot
position ϕ(x) and γ(g), facilitating a responsive path
following behavior. The initial condition for g is set to
g(0) = 0, corresponding to the starting point of the path
γ(0).

Lemma 7.4. (Asymptotic stability of the governor
dynamics): The equilibrium point g∗ = 1 is asymptotically
stable for the governor dynamics in (27).

Proof. Note that [0, 1] is forward invariant under (27).
Consider the candidate Lyapunov function:

Vg(g) =
1

2
(1− g)2. (28)

Note that Vg is positive definite with respect to g = 1. Its
time derivative along the trajectories of (27) is

V̇g(g) = −(1− g)ġ = − k(1− g)

1 + ∥ϕ(x)− γ(g)∥
(1− gζ)

Since V̇g(g) ≤ 0 for all g ∈ [0,∞) and V̇g(g) = 0 if
and only if g = 1, we conclude that g = 1 is globally
asymptotically stable (over [0,∞)) for the governor
dynamics (27).

From Lemma 7.3, for a goal position q, the control-affine
system under the control law û(x,q) converges to the set
of equilibrium points E(q) = {x ∈ X : ϕ(x) = q}. In the
path-following context, we make q move along the path γ,
resulting in the control law û(x, γ(g)) and the equilibrium
set E(γ(g)). The following result formalizes the asymptotic
convergence of the interconnected system.

Theorem 7.5. (Asymptotic stability of the intercon-
nected system): Consider the interconnected system con-
sisting of the governor dynamics (27) and the closed-
loop dynamics (1) with the control law û(x, γ(g)). Under
Assumptions 7.1 and 7.2, there exists a sufficiently small
k∗ > 0 such that, for all k ∈ (0, k∗], the equilibrium set
E(γ(1))× {1} is asymptotically stable for the intercon-
nected system.

Proof. We prove the result using singular perturbation
theory (Khalil 2002). We view the control-affine dynamics
with state x ∈ X as the fast subsystem and the governor
dynamics with state g ∈ [0, 1] as the slow subsystem. First,
we analyze the reduced-order model, obtained by setting
ġ = 0 in (27):

0 =
k

1 + ∥ϕ(x)− γ(g)∥
(1− gζ). (29)

The solution to (29) is g = 1, which corresponds to the
endpoint of the path γ(1). By Lemma 7.3, when g =
1, the equilibrium set E(γ(1)) for the constant reference
point γ(1) is asymptotically stable for the control-affine
dynamics with the control law û(x, γ(1)).

Next, we consider the boundary-layer system, obtained
by introducing a fast time scale τ = t/ν and taking the limit
ν → 0:

dx

dτ
= f(x) + g(x)û(x, γ(ḡ)), (30)

where ḡ ∈ [0, 1] is treated as a fixed parameter. By
Lemma 7.3, for each fixed ḡ, the equilibrium set E(γ(ḡ))
is asymptotically stable for the boundary-layer system (30).

Next, we analyze the reduced slow system, obtained by
substituting the quasi-steady-state solution x(g) ∈ E(γ(1))
into the slow subsystem:

ġ =
k

1 + ∥γ(g)− γ(g)∥
(1− gζ) = k(1− gζ). (31)

This system has a unique equilibrium point g∗ = 1, which
is globally asymptotically stable on [0,∞).

Consequently, as discussed in Khalil (2002, Appendix
C.3), there exists a sufficiently small k∗ > 0 such that,
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for all k ∈ (0, k∗], the equilibrium set E(γ(1))× {1} is
asymptotically stable for the interconnected system.

In practical implementations, the control input is applied
at a finite sampling rate. To preserve stability guarantees,
we use a sampling frequency of 50 Hz in the simulations
and experiments, ensuring that the discretized behavior
closely approximates the continuous-time result.

Remark 7.6. (Practical considerations for control
bounds): The original CLF-CBF QP formulation in (6)
assumes no control bounds, a condition often not met in
real-world robot applications due to physical limitations,
such as maximum speed and acceleration. To ensure
the applicability of our approach within these practical
constraints, one can tune the parameters k in the governor
dynamics (27) to establish a smooth path-following
behavior that respects the control bounds. Specifically,
increasing k slows down the progression of the reference
goal γ(g), reducing the control effort required. •

Remark 7.7. (Practical considerations for conver-
gence): Theorem 7.5 establishes the asymptotic stability
of the equilibrium set Ē(γ(1))× 1 for the interconnected
system, which implies that the robot’s position ϕ(x(t)) con-
verges to the endpoint γ(1) of the path as t → ∞. However,
in practical applications, it is important to consider the
finite-time convergence of the robot to its destination. To
address this, we introduce a threshold µ∗ > 0 and consider
the robot to have effectively reached its destination when
|ϕ(x(t))− γ(1)| ≤ µ∗. By setting an appropriate value for
µ∗, we can guarantee that the robot completes its navigation
task within a finite time, while still ensuring that it reaches
a sufficiently close vicinity of the goal γ(1). •

8 Application to Differential-Drive Robot
While the theory of our control method is applicable to
general control-affine systems (1), our experiments focus
on a wheeled differential-drive robot.

We consider a robot with state x := [x, y, θ]⊤ ∈
X ⊆ R2 × [−π, π), input u := [v, ω]⊤ ∈ U ⊂ R2, and
dynamics:

ẋ =

cos(θ) 0
sin(θ) 0

0 1

[v
ω

]
. (32)

The function ϕ : X → R2 projecting the robot state x to its
position is ϕ(x) = ϕ([x, y, θ]⊤) = [x, y]⊤.

We define the state space of the robot as X = D ×
[−π, π), where D ⊂ R2 is a sufficiently large compact set
containing the environment of interest, including the goal
point qG and the planned path γ.

In this section, we instantiate the control strategy
developed in the previous sections to the case of
differential-drive dynamics in (32). We first design a

(a) Path tracking (b) Safe navigation

Figure 4. (a) A robot is depicted following a path generated by
a motion planning algorithm, and a dynamic local reference
goal is highlighted in yellow. (b) The robot senses the
environment with a 360-degree LiDAR sensor mounted at x̃.
The CBF samples {hi(x)}Ni=1 are the rays with boundary
points highlighted as red triangles, and are selected based on
the distance from the LiDAR detections to the robot body.

CLF that enables stabilization to a desired goal point, as
requested by Assumption 7.2. Then, we discuss the validity
of using the SDF as a CBF candidate for ensuring safety.
Next, we provide a discussion on how to select CBF
samples based on range sensor measurements, which is
crucial for the practical implementation of the proposed
DR-CBF formulation. To address uncertainties in both
localization and sensor data, we also introduce a unified
error model that captures how localization errors propagate
to LiDAR measurements, impacting the robot’s perception
of obstacles. By combining the unicycle-specific CLF
and the data-driven CBF, we obtain a CLF-DR-CBF QP
formulation tailored to the unicycle dynamics, enabling safe
and efficient navigation in unknown dynamic environments.

8.1 Unicycle Stabilization to a Goal Position
We design a CLF that enables stabilization of the unicycle
dynamics (32) to a desired goal point qG ∈ R2.

Inspired by İşleyen et al. (2023), for a local reference
point q ∈ R2, we define V as follows:

V (x)=

{
1
2 (kv∥q−ϕ(x)∥2+kωatan2(e⊥v , ev)

2), ϕ(x) ̸=q,

0, ϕ(x)=q,

(33)
where ϕ(x) denotes the current robot position, and
kv, kω > 0 are user-specified control gains for linear and
angular errors. The error terms ev and e⊥v are defined as:

ev =

[
cos θ
sin θ

]⊤
(q− ϕ(x)), e⊥v =

[
− sin θ
cos θ

]⊤
(q− ϕ(x)).

(34)
When ϕ(x) ̸= q, the first part of V (x) represents the
squared Euclidean distance between ϕ(x) and q, while
the second part quantifies the squared angular alignment
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error. Fig. 4a illustrates the unicycle robot tracking a local
reference point q on the planned path.

The time derivative of V (x) is:

V̇ (x) = LgV (x)u =

−kvev + kω
atan2(e⊥v , ev)
∥q− ϕ(x)∥2

e⊥v

−kωatan2(e⊥v , ev)

⊤

u.

(35)
The following result provides a control law that ensures

the satisfaction of the CLC in (2).

Lemma 8.1. (Control Lyapunov constraint
satisfaction): Let αV be a class K function satisfying
limr→0+

αV (r)
r = 0. For any state x ∈ X , the following

control law

u(x) =

{
−αV (V (x))

LgV (x)⊤

∥LgV (x)⊤∥2 , ϕ(x) ̸= q,

0, ϕ(x) = q,
(36)

ensures that LfV (x) + LgV (x)u(x) + αV (V (x)) ≤ 0 is
satisfied. Furthermore, the control law is Lipschitz
continuous for ϕ(x) ̸= q and continuous at q.

Proof. First, note that for any x ∈ X such that ϕ(x) = q,
we have V (x) = 0 and LgV (x) = 0, regardless of the
orientation θ. In this case, the control law u(x) given
by (36) is simply 0, which trivially satisfies the CLC:
LfV (x) + LgV (x)u(x) + αV (V (x)) ≤ 0.

Next, we show that LgV (x) ̸= 0 for all x ∈ X such
that ϕ(x) ̸= q. Suppose, by contradiction, that LgV (x) =
0. This implies kωatan2(e⊥v , ev) = 0, which means e⊥v =

0. From (34), we have e2v + e⊥
2

v = (q− ϕ(x))2. Since
e⊥v = 0 and ϕ(x) ̸= q, we obtain ev = ±|q− ϕ(x)| ≠ 0,
contradicting the assumption that LgV (x) = 0. Hence,
LgV (x) ̸= 0 for all x ∈ X such that ϕ(x) ̸= q.

Now, for all x ∈ X such that ϕ(x) ̸= q, the control
law u(x) given by (36) is the closed-form solution to the
optimization problem:

min
u∈Rm

∥u∥2, (37)

s.t. LgV (x)u+ αV (V (x)) ≤ 0.

Since V (x) is smooth with bounded derivatives for ϕ(x) ̸=
q, it follows that u(x) is Lipschitz continuous on the set
{x ∈ X : ϕ(x) ̸= q}.

Next, to show continuity on X , we prove that
limx→xG

u(x) = 0 for any xG ∈ X such that ϕ(xG) = q.
Based on (35), we can write

lim
x→xG

|u(x)| = lim
x→xG

∣∣∣∣αV (V (x))
LgV (x)⊤

∥LgV (x)⊤∥2

∣∣∣∣
≤ lim

x→xG

αV (V (x))

V (x)
· lim
x→xG

∣∣∣∣ V (x)

∥LgV (x)⊤∥

∣∣∣∣ = 0,

where the last equality holds because the first limit is zero
by the assumption on αV , and the second limit is bounded
since V (x)

|LgV (x)⊤| remains bounded as x → xG. Therefore,
the control law u(x) is continuous on X .

The control law minimizes the norm of u while ensuring
V̇ (x) < 0. Therefore, the function V in (33) together
with the control law u(x) in (36) satisfy Assumption 7.2.
Therefore, Lemma 7.3 ensures that the system is guided
towards the goal point q. Since the control law u(x) = 0
whenever ϕ(x) = q, the orientation θ(t) may converge to
any value, depending on the initial conditions. Finally, by
Theorem 7.5, the closed-loop dynamics interconnected with
the governor dynamics has the unicycle robot track the
planned path γ in R2.

8.2 Signed Distance Function as Control
Barrier Function

In unknown and dynamic environments, the precise
computation of the barrier function h(x, t) or the
construction of a probabilistic model is challenging. This
section focuses on showing that the robot SDF (9) is a valid
CBF for (32) under appropriate assumptions.

We make the following assumptions:

Assumption 8.2. (Regularity of Robot Shape): The
robot shape B0 has a smooth boundary and is compact.

Based on the robot SDF in (9), we define the candidate
CBF as:

h(x, t)=d(B(x),O(t)) := inf
q∈O(t)

dB0

(
R(x)⊤(q− ϕ(x))

)
,

(38)
where O(t) ⊂ R2 is the obstacle set at time t, and R(x) ∈
SO(2) is the rotation matrix that describes the unicycle’s
orientation. By Assumption 8.2, we know that dB0(·) is 1-
Lipschitz continuous (Fitzpatrick 1980). The presence of
the infimum operator in (38) ensures that the candidate CBF
h(x, t) is Lipschitz continuous. However, it is important to
note that h(x, t) is, in general, not smooth due to both the
properties of dB0

(·) and the infimum operation.
Therefore, we review some concepts from nonsmooth

analysis to handle the potential non-differentiability of h.

Definition 8.3. (Generalized Gradient): Let h : X ×
R≥0 → R be Lipschitz continuous near z := (x, t) ∈ R4,
and suppose Z is any set of Lebesgue measure zero in R4.
The Clarke generalized gradient (Clarke 1981) of h at z is
defined as

∂h(z) = co
{
lim
i→∞

∇h(zi)
∣∣ zi → z, zi /∈ Ωh ∪ Z

}
,

(39)
where co denotes the convex hull and Ωh is the set of points
where h fails to be differentiable.
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Using this definition, we extend the notion of time-
varying control barrier functions to functions that are not
necessarily differentiable everywhere.

Definition 8.4. (Nonsmooth Time-Varying Control
Barrier Function): A Lipschitz continuous and regular
function h : X × R≥0 → R is called a nonsmooth time-
varying control barrier function on a set H ⊂ R4 if there
exists an extended class-K function α such that for all
x ∈ X and all t ≥ 0,

sup
u∈U

inf
(y,z)∈∂h(x,t)

{
y⊤ (f(x) + g(x)u) + z

}
≥ −α(h(x, t)),

(40)
where ∂h(x, t) is the generalized gradient of h.

Next, we show that h(x, t) in (38) is a valid time-varying
CBF candidate for the dynamics in (32) under the following
assumptions.

Assumption 8.5. (Boundedness and Regularity of
Obstacles): We assume that:

• The initial obstacle set O0 is bounded, and the
transformations AO(t) and bO(t) in (10) are
uniformly bounded over t.

• There exists a constant B > 0 such that for all (x, t)
and all (y, z) ∈ ∂h(x, t), it holds that |z| ≤ B.

The following result establishes the boundedness of the
obstacle set O(t). Its proof is straightforward and therefore
omitted.

Lemma 8.6. (Obstacle Set Boundedness): Under
Assumption 8.5, the obstacle set O(t) is bounded for all
t ≥ 0.

Next, we show that h(x, t) is Lipschitz.

Lemma 8.7. (Lipschitzness of Non-smooth CBF):
Under Assumptions 8.2 and 8.5, the function h(x, t) is
Lipschitz in (x, t).

Proof. For each fixed q ∈ O(t), we write

hq(x) = dB0

(
R(x)⊤ (q− ϕ(x))

)
.

Since R(x) and ϕ(x) are continuously differentiable,
they are also Lipschitz continuous on the compact
set X . Let LR and Lϕ be their Lipschitz constants,
respectively, so that ∥R(x1)−R(x2)∥ ≤ LR ∥x1 − x2∥
and ∥ϕ(x1)− ϕ(x2)∥ ≤ Lϕ ∥x1 − x2∥. Now, for any
x1,x2 ∈ X and fixed q ∈ O(t), one has

|hq(x1)− hq(x2)|
=
∣∣dB0

(
R(x1)

⊤ (q−ϕ(x1))
)
−dB0

(
R(x2)

⊤ (q−ϕ(x2))
)∣∣

≤
∥∥R(x1)

⊤ (q− ϕ(x1))−R(x2)
⊤ (q− ϕ(x2))

∥∥
≤
∥∥[R(x1)

⊤ −R(x2)
⊤] (q− ϕ(x1))

∥∥+

∥∥R(x2)
⊤ (ϕ(x2)− ϕ(x1))

∥∥ . (41)

where the first equality comes from the fact that dB0
is 1-

Lipschitz (Fitzpatrick 1980).
For the first term in (41), we have∥∥[R(x1)

⊤ −R(x2)
⊤] (q− ϕ(x1))

∥∥
≤ LR ∥x1 − x2∥ · (∥q∥+ ∥ϕ(x1)∥) .

Since X is bounded by assumption and O(t) is also
bounded, cf. Lemma 8.6, there exist Mq,Mϕ > 0 such that
∥q∥ ≤ Mq and ∥ϕ(x1)∥ ≤ Mϕ. Therefore:∥∥[R(x1)

⊤ −R(x2)
⊤] (q− ϕ(x1))

∥∥
≤ LR(Mq +Mϕ) ∥x1 − x2∥ .

For the second term in (41), since ∥R(x)∥ = 1, we have∥∥R(x2)
⊤ (ϕ(x2)− ϕ(x1))

∥∥ ≤ Lϕ ∥x1 − x2∥ .

Combining the bounds from the two terms, we conclude

|hq(x1)− hq(x2)| ≤ Lh ∥x1 − x2∥ , (42)

with Lh = (LR(Mq +Mϕ) + Lϕ). As established in
Rockafellar and Wets (2009, Proposition 9.10), the
pointwise infimum of a collection of Lipschitz functions is
Lipschitz with a constant bounded by the maximum of the
individual Lipschitz constants. Therefore, since hq(x) is
uniformly Lipschitz with constant Lh and O(t) is bounded,
the infimum h(x, t) = infq∈O(t) hq(x) is Lipschitz with
the same constant Lh.

Furthermore, by Assumption 8.5, h(x, t) is Lipschitz in t
with constant B.

Next, our goal is to show that for all (x, t) ∈ X × R≥0,
there exists a control input u ∈ U such that the CBF
condition (40) holds.

Proposition 8.8. (Sufficient Conditions for Signed Dis-
tance Function as a Nonsmooth Time-Varying Control
Barrier Function): Under Assumptions 8.2 and 8.5, the
function h(x, t) defined in (38) satisfies the nonsmooth CBF
condition (40) for the unicycle dynamics (32), provided that
inf(0,z)∈∂h(x,t) z ≥ −αh(h(x, t)).

Proof. Using the unicycle dynamics (32), for any (y, z) ∈
∂h(x, t), the expression inside the infimum in (40) becomes

y⊤ (f(x) + g(x)u) + z = (43)

y⊤

cos θsin θ
0

 v +

00
1

ω

+ z = avv + aωω + z,
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where

av = y⊤

cos θsin θ
0

 , aω = y⊤

00
1

 .

From Lemma 8.7, ∥y∥ ≤ Lh. It follows that |av|, |aω| ≤
Lh. We now consider two cases:

Case 1: (0, z) /∈ ∂h(x, t). In this case, y ̸= 0, so at least
one of av or aω is non-zero. Define ε = a2v + a2ω > 0 and
choose

v =
av
ε
β, ω =

aω
ε
β, (44)

where β > 0 is a scaling factor. Then, since z ∈ [−B,B]
(cf. Assumption 8.5), we get

avv + aωω + z =

(
a2v + a2ω

ε

)
β + z ≥ β −B. (45)

The scaling factor β can be chosen sufficiently large to
ensure that the nonsmooth CBF condition (40) is satisfied.

Case 2: (0, z) ∈ ∂h(x, t). In this case, the spatial
gradient of h vanishes, and the expression in (43) simplifies
to:

y⊤ (f(x) + g(x)u) + z = z.

The nonsmooth CBF condition (40) holds in this case
because of the hypotheses of the statement.

Regarding the requirement of Proposition 8.8, intu-
itively, when y = 0, the spatial gradient does not pro-
vide directional guidance for the robot, and the safety
condition depends solely on the temporal evolution of
h, i.e., the behavior of the obstacles. The requirement
inf(0,z)∈∂h(x,t) z ≥ −αh(h(x, t)) ensures that the nons-
mooth CBF condition is satisfied in this case.

In practice, we need to ensure that the control inputs v
and ω satisfy the control constraints |v| ≤ vmax and |ω| ≤
ωmax. Based on (44) and (45), this means that the bound
B on the partial time derivative of the distance function
must be compatible with the control bounds to ensure the
inequality (40) holds. In other words, to guarantee safety,
the obstacles must move at speeds compatible with the
motion capabilities of the robot.

8.3 Sensor-Based CBF Sample Selection
As the robot navigates through unknown and dynamic
environments relying on noisy LiDAR measurements,
precisely determining the obstacle set O(t) and thus
computing h(x, t) is not feasible. Therefore, we leverage
the distributionally robust CBF formulation from Sec. 6 and
obtain samples {ξi}Ni=1, where recall

ξ = [F⊤(x)∇xh(x, t), αh(h(x, t)),
∂h(x, t)

∂t
],

directly from the distance measurements η(ϕ(x),R(x)) =
[η1(ϕ(x),R(x)), . . . , ηK(ϕ(x),R(x))]⊤. Note that the
system dynamics F(x) and K∞ function αh are assumed
to be known and deterministic.

In practical robotic systems, sensor measurements, such
as LiDAR readings, are collected at discrete intervals
determined by the sensor’s frequency. These measurements
must be processed, along with state estimation and control
synthesis, within the time constraints of the control loop to
ensure real-time applicability.

To account for state estimation uncertainty, we consider
M samples of the robot’s estimated pose, denoted as
{x(j)}Mj=1, where each sample represents a possible true
pose of the differential-drive robot given its localization
error distribution. For each sample x(j), we have K
corresponding LiDAR measurements in the robot’s local
frame, {η(j)

i }Ki=1. These measurements are transformed
into the global frame using the estimated pose, yielding
LiDAR hit q

(j)
i (t) ∈ R2 with i-th LiDAR measurement

of pose xj at time t. By aggregating these transformed
measurements, we construct a comprehensive set of LiDAR
points in the global frame:

P(t) =
{
q
(j)
i (t) | i = 1, . . . ,K; j = 1, . . . , N

}
⊂ R2,

(46)
resulting in a total of N ×K points. This set effectively
captures the combined uncertainties in both state estimation
(localization) and sensor measurements. To account for
dynamic obstacles, we may obtain estimates of the time

derivatives {∂qj
i

∂t } using a radar sensor, Doppler LiDAR, or
a LiDAR velocity estimation algorithm (Yang et al. 2022).

Since we cannot compute h(x, t) exactly, we use the
available LiDAR points set P(t) to approximate the barrier
function and its gradients. From this aggregated data, we
select N samples that minimize the following criterion:

∂

∂t
dB0

(
R(x)⊤ (qi(t)− ϕ(x))

)
+

αh

(
dB0

(
R(x)⊤ (qi(t)− ϕ(x))

))
, (47)

for i = 1, . . . ,K. Note that the generalized gradient
∂hi(x, t) can be computed correspondingly by utilizing the
robot SDF dB0 . This criterion effectively identifies obstacle
points where the combined effect of the barrier function’s
rate of change and its current value is most critical,
highlighting the samples where the safety constraint, as
defined in (5), is closest to being violated.

With this procedure, given each x ∈ X , we have
available samples {ξi}i∈[N ] for the vector ξ.

Remark 8.9. (Sample selection for static environ-
ments): If ∂h

∂t = 0, the selection of the N samples reduces
to finding the minimum N values of hi(x), representing the
distance of N closest detected obstacle points to the robot.
This is illustrated in Fig. 4b. •
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With the sample collection strategy for {ξi}i∈[N ] and
the CLF design in (33), we formulate the CLF-DR-CBF
optimization problem in (21) to synthesize control inputs
for the unicycle robot.

The differential-drive specific CLF is combined with
the DR-CBF constraint, which is based on the CBF
samples obtained from the range sensor measurements
and estimated robot poses. This approach enables safe
robot navigation in unknown dynamic environments, while
directly utilizing the sensor measurements to ensure safety.

8.4 Application to Other Robotic Systems
Our CLF-DR-CBF formulation can be applied to other
control-affine robotic systems described by (1). To apply
this formulation to a different system, two key components
are required: a CLF V (x) and a CBF h(x, t):

• CLF: V (x) should encode the stability with respect
to a desired equilibirum. In many cases, it is more
practical to design a CLF for a subset of the state
space, such as position, rather than the full state,
particularly for underactuated systems like unicycles;

• CBF: h(x, t) defines the safety specifications based
on the robot’s geometry and its interaction with the
environment. The CBF samples can be obtained, for
example, from onboard sensory data.

Note that systematic approaches exist for constructing
CLFs, including sum-of-squares programming (Jarvis-
Wloszek et al. 2003; Dai et al. 2024) and neural network-
based approaches (Chang et al. 2019; Boffi et al. 2021).
Additionally, specific classes of systems, such as linear
systems and differentially flat systems, are more tractable
in this context, as discussed in (Mestres et al. 2024b).
Once these components are defined, the CLF-DR-CBF
formulation can be directly applied to synthesize a
distributionally robust safe and stable controller.

For instance, a table-top manipulator evolves in a high-
dimensional configuration space, where safety constraints
must prevent both obstacle collisions and self-collisions.
A CLF can be designed to stabilize the manipulator’s
end-effector toward a target pose in task space. This
typically involves defining a Lyapunov function over task-
space error (e.g., pose error in SE(3)) and mapping its
gradient back to joint space via the manipulator’s Jacobian.
Alternatively, inverse kinematics can be used to convert
the task-space target into a reference joint configuration,
around which a CLF is constructed. The CBF, on the
other hand, can be constructed using signed distance
functions (Koptev et al. 2023; Li et al. 2024), which encode
collision avoidance constraints. CBF samples can similarly
be obtained from onboard sensory data (e.g., images) and
robot state estimations.

(a) Static environment (b) Dynamic environment

Figure 5. Simulated environments in Gazebo.

9 Evaluation

In this section, we evaluate our CLF-DR-CBF QP
formulation through several simulation and real-world
experiments.

We compare our approach with two other safe control
strategies, the nominal CLF-CBF QP in (6) and a CLF-
Gaussian Process (GP)-CBF second-order cone program
(SOCP) (Long et al. 2022). The nominal CLF-CBF QP
approach utilizes the closest LiDAR point to define a single
CBF h(x, t) and its gradients at each time step. In the CLF-
GP-CBF SOCP method, a real-time GP-SDF model (Wu
et al. 2021) of the unknown environment is constructed
using LiDAR data, from which the CBF, its gradient, and
uncertainty information are determined. While the GP-
SDF mapping process contributes to safety by continuously
updating the environment representation, it also incurs
computational overhead due to the real-time update of the
GP-SDF model. For a fair evaluation, we solve each of the
optimization programs to generate control signals using the
Interior Point Optimizer through the CasADi framework
(Andersson et al. 2019).

In the following simulations and experiments, a
consistent set of parameters is utilized to ensure
reproducibility of the results. The linear velocity is
constrained in [−1.2, 1.2] m/s and the angular velocity is
limited within [−1, 1] rad/s. The nominal control input k(x)
is set to [1.2, 0]⊤, directing the robot to move forward at 1.2
m/s. While we use a constant nominal controller, note that
our formulation supports more complex, state-dependent
nominal controllers. The scaling factor is λ = 50. Table 1
summarizes other parameter values.

The layout of this section is as follows. Sec. 9.1
presents simulation results and compares with the two
baseline approaches in static environments (e.g., Fig. 5a).
In Sec. 9.2, we evaluate our approach in dynamic Gazebo
environments (Koenig and Howard 2004) with pedestrians,
shown in Fig. 5b. Finally, in Sect. 9.3, we test our CLF-
DR-CBF QP formulation in dynamic cluttered real-world
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(a) Robot Shape (b) Trajectory under different robot
shapes

(c) Trajectory under varying LiDAR
Noise

(d) Trajectory under varying
Localization Noise

Figure 6. Evaluation of robot navigation performance under varying conditions. The simulations demonstrate the system’s
behavior across different robot shapes and noise conditions, with (a) showing the tested robot shapes, (b) illustrating the impact
of shape variation on navigation, and (c-d) analyzing the effects of sensor and localization uncertainties on trajectory execution.
For (c) and (d), Shape 1 from (a) is used as the test case.

Table 1. Simulation and experiment parameters. The class K
function αV for CLF and the class K∞ for CBF are assumed
to be linear. The parameters kv and kω are control gains for
linear and angular velocities, respectively, ϵ the risk tolerance
of the CLF-DR-CBF QP formulation, and N the DR-CBF
sample size.

Parameters αV αh kv kω ϵ N
Value 1.0 1.5 0.05 0.4 0.1 5

environments. In all results, the A∗ algorithm is employed
for path planning, operating at a frequency of 5 Hz. Our
CLF-DR-CBF QP formulation is used for real-time safe
navigation, running at 50 Hz.

9.1 Simulated Static Environments
The first set of simulations aims to validate the robustness
and adaptability of the proposed CLF-DR-CBF QP
formulation in static environments.

Hypothesis: Our CLF-DR-CBF QP method can ensure
safe navigation by dynamically adjusting to varying robot
shapes and compensating for sensor and localization noise.

Setup: The robot is tasked to follow the planned
path while avoiding obstacles. Gaussian noise with
varying standard deviations (σ) is added to the LiDAR
measurements, while the localization error is modeled as
a Gaussian random vector with varying standard deviation
levels as well. Diverse robot shape geometries (Figure 6a)
are considered to evaluate the method’s adaptability. Unless
otherwise noted, the default robot shape is shape 1,
representing the original Jackal robot. The trajectories

are analyzed under different conditions to assess safety,
adaptability, and smooth navigation.

Results and discussion: Figure 6b demonstrates the
trajectories for each robot shape. The results show
that our approach dynamically adjusts the robot’s path
based on its geometry, ensuring safety by maintaining
adequate clearance from obstacles while achieving smooth
navigation. For symmetric shapes like robot shape 1
(original Jackal robot), the executed path is closer to
the obstacle boundary. In contrast, for highly asymmetric
shapes like robot shape 3, the executed path deviates more
significantly to account for the robot’s geometry to ensure
safety. Unless otherwise noted, the simulations presented in
the following are performed using robot shape 1.

Figures 6c and 6d explore the effects of sensor and
localization noise on navigation performance. In Figure 6c,
our CLF-DR-CBF QP method successfully compensates
for sensor inaccuracies, maintaining safety even at higher
noise levels (σ = 0.2). Similarly, Figure 6d evaluates
the impact of localization noise on trajectory execution,
where the robot effectively adapts to inaccuracies in
state estimation, showcasing the robustness of our
distributionally robust formulation.

We next evaluate the performance of our CLF-DR-CBF
QP formulation in static environments simulated in Gazebo
(Fig. 5a), comparing it with two baseline approaches:
Nominal CLF-CBF QP and CLF-GP-CBF SOCP (Long
et al. 2022).

Hypothesis: Our CLF-DR-CBF QP formulation ensures
robust and safe navigation under varying levels of sensor
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Table 2. Performance metrics for static environments under varying LiDAR and localization noise. The metrics include stuck rate
and collision rate out of 1000 trials and tracking error (m) (mean ± std). The stuck rate reflects cases of infeasibility or the robot
being trapped in local optima. The robot starts from the origin, and goals are placed at least 10 meters away in Figure 5a.

LiDAR Noise Localization Noise Method Stuck Rate Collision Rate Tracking Error (m)

σ = 0.001

σ = 0.01
CLF-DR-CBF QP 0.0 0.0 1.33 ± 0.19

CLF-GP-CBF SOCP 0.2 0.0 1.38 ± 0.31
Nominal CLF-CBF QP 0.0 0.2 1.26 ± 0.20

σ = 0.05
CLF-DR-CBF QP 0.1 0.0 1.88 ± 0.35

CLF-GP-CBF SOCP 0.3 15.8 2.16 ± 0.47
Nominal CLF-CBF QP 0.1 15.5 1.92 ± 0.34

σ = 0.05

σ = 0.01
CLF-DR-CBF QP 0.0 0.0 1.77 ± 0.38

CLF-GP-CBF SOCP 25.1 0.2 1.97 ± 0.52
Nominal CLF-CBF QP 1.7 4.4 1.82 ± 0.41

σ = 0.05
CLF-DR-CBF QP 1.8 0.7 2.22 ± 0.57

CLF-GP-CBF SOCP 31.3 13.9 2.58 ± 0.78
Nominal CLF-CBF QP 3.3 25.8 2.23 ± 0.59

σ = 0.1

σ = 0.01
CLF-DR-CBF QP 1.2 0.0 2.31 ± 0.66

CLF-GP-CBF SOCP 60.7 0.0 2.55 ± 0.79
Nominal CLF-CBF QP 4.7 7.7 2.52 ± 0.72

σ = 0.05
CLF-DR-CBF QP 6.6 1.8 2.61 ± 0.75

CLF-GP-CBF SOCP 65.4 22.0 2.78 ± 0.91
Nominal CLF-CBF QP 8.9 58.3 2.55 ± 0.69

and localization noise. Compared to baseline methods, our
approach should achieve lower failure rates (stuck and
collision) and demonstrate superior adaptability to noise
conditions without compromising computational efficiency.

Setup: The simulations are conducted in a static Gazebo
environment where the robot is tasked to achieve a
predefined goal while avoiding obstacles. Gaussian noise
with standard deviation σ (ranging from 0.001 to 0.1)
is added to the LiDAR measurements, and localization
noise with σ values up to 0.05 is introduced. For each
noise level, 1000 trials are conducted with randomly placed
goal locations at least 10 meters away from the robot’s
starting position. The evaluation metrics include stuck rate,
collision rate, and average tracking error (mean ± std), as
summarized in Table 2.

The stuck rate and collision rate together determine the
success rate, representing the percentage of trials where
the robot successfully reaches the goal without safety
violations. The stuck rate captures two failure modes. First,
the optimization program may become infeasible due to
large uncertainties, particularly in the GP-CBF method,
where the GP-SDF map’s high variance at large LiDAR
noise levels often renders the SOCP problem infeasible.
Second, the robot may become trapped in a corner (local
minimum), unable to make further progress toward the goal.

Results and discussion: The results in Table 2
highlight the robustness of the CLF-DR-CBF QP method,
which consistently achieves low stuck and collision rates,
even under high noise levels. In contrast, the GP-CBF

and Nominal CLF-CBF QP methods exhibit significant
performance degradation in challenging noise conditions.

As localization noise increases, the two baseline methods
are more prone to collisions. This is because their
formulations do not explicitly account for uncertainties
in the robot state estimation. Our CLF-DR-CBF QP
method remains robust by explicitly addressing localization
uncertainties in its formulation. Similarly, at higher
LiDAR noise levels, the GP-CBF method struggles
due to significant variance in the GP-SDF estimation,
often rendering its optimization program infeasible. The
CLF-DR-CBF QP method, by directly using LiDAR
measurements and incorporating distributionally robust
constraints, avoids reliance on explicit map construction,
exhibiting a higher probability of reliable performance at
higher noise levels. Table 3 highlights the computational
efficiency of the proposed method. The CLF-DR-CBF
QP formulation achieves computation times comparable
to the Nominal CLF-CBF QP method while significantly
outperforming the GP-CBF method. This advantage stems
from the CLF-DR-CBF QP method’s direct use of LiDAR
measurements without requiring computationally expensive
GP map construction.

Overall, these results demonstrate the robustness and
efficiency of the proposed CLF-DR-CBF QP formulation.
By directly handling noisy sensor data and avoiding
reliance on explicit map reconstruction, the method
effectively balances computational efficiency and robust
safety, making it suitable for real-world applications
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Table 3. Computation time comparison between different control approaches (in seconds). The values represent the mean ±
standard deviation of the computation time along the robot trajectory. The total computation time for each method is the sum of
the GP map training time (if applicable), inference time, and control synthesis solver time. The CLF-DR-CBF QP and Nominal
CLF-CBF QP methods have similar total computation time, as they do not require map updates. For these two methods, the
inference time refers to processing the LiDAR data as CBF samples and corresponding gradients. The CLF-GP-CBF SOCP
method has the highest total computation time due to the additional overhead of GP map training.

Method Map Training Inference Controller Solver Total Computation Time
CLF-DR-CBF QP 0 0.0002 0.0071 ± 0.0022 0.0073 ± 0.0022
CLF-GP-CBF SOCP 0.0086 ± 0.0031 0.0003 0.0096 ± 0.0028 0.0185 ± 0.0059
Nominal CLF-CBF QP 0 0.0002 0.0064 ± 0.0023 0.0066 ± 0.0023

Table 4. Performance metrics for dynamic environments over 1000 trials. The metrics include success rate, stuck rate, collision
rate, and task completion time (mean ± std). The CLF-DR-CBF QP outperforms both baselines in terms of success rate and
collision avoidance, demonstrating its robustness in dynamic settings.

Method Success Rate (%) Stuck Rate (%) Collision Rate (%) Time (s)
CLF-DR-CBF QP 93.2 5.1 1.7 10.7± 2.2
CLF-GP-CBF SOCP 60.5 36.3 3.2 13.6± 2.9
Nominal CLF-CBF QP 61.7 8.5 29.8 10.1± 2.1

(a) Defensive Maneuver (b) Resuming Tracking (c) Wait Pedestrian (d) Resuming Tracking (e) Task Completion

Figure 7. Snapshots showing safe robot navigation in a simulated dynamic environment with three pedestrians, as depicted in
Fig. 5b. The ground-truth static environment (e.g., walls, table base) is plotted in black. Each pedestrian is represented by a light
green circle, with trajectory over the past second and current velocity also displayed. (a) At t = 3.4s, the robot adjusts its
trajectory due to an approaching pedestrian, adopting a defensive maneuver by rotating left (−1 rad/s) and moving backwards
(−0.49m/s). (b) By t = 5.2s, as the pedestrian clears, the robot accelerates forward (0.89m/s) to track its planned path towards
the first waypoint. (c) At t = 22.8s, facing another pedestrian crossing its planned path, the robot stops (−0.02m/s) to allow the
pedestrian to pass. (d) At t = 24.2s, the pedestrian has moved away, enabling the robot to resume its course towards the goal.
(e) The complete trajectory at t = 25.6s shows the robot successfully navigated to two waypoints and the final goal, ensuring
safety in a dynamically changing environment.

where sensing noise, localization noise, and computational
constraints are significant challenges.

9.2 Simulated Dynamic Environments

The dynamic environment simulations are conducted in
Gazebo (cf. Fig. 5b), designed to mimic real-world

scenarios with pedestrians modeled using the social force
model (Helbing and Molnar 1995; Moussaı̈d et al. 2010).

Hypothesis: Our CLF-DR-CBF QP approach will
outperform baseline methods in handling time-varying
constraints under noisy conditions. Specifically, we expect
our method to achieve higher success rates, lower collision
rates, and efficient task completion times, due to its ability
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to incorporate sensor noise and localization uncertainty
directly into the control formulation.

Setup: The robot starts at (0, 0) with an initial orientation
of 0◦, and the goal locations are randomly placed at least 6
meters away. Pedestrians are also randomly positioned in
the environment, with velocities bounded by B = 1 m/s.
Both the static and dynamic elements of the environment
are unknown, and the robot relies on noisy LiDAR
measurements (Gaussian noise with σ = 0.05) for collision
avoidance. In all simulations below, the A∗ planning
algorithm operates independently of the pedestrian motion,
and the real-time pedestrian avoidance relies on our CLF-
DR-CBF QP formulation (or the two baseline approaches).
We conducted 1000 trials for each method, measuring
metrics such as success rate, stuck rate, collision rate,
and average task completion time. Success is defined as
reaching the goal while maintaining safety, while a trial is
considered stuck if the robot fails to reach the goal within
20 seconds.

Results and discussion: Table 4 summarizes the
quantitative results. The proposed CLF-DR-CBF QP
approach achieves the highest success rate (93.2%) and the
lowest collision rate (1.7%) among the three methods. By
directly handling sensor noise through its distributionally
robust formulation, the CLF-DR-CBF QP method ensures
safety while maintaining efficient task completion times.
The GP-CBF method exhibits a lower success rate and
higher stuck rate due to its reliance on the GP-SDF map,
which becomes computationally expensive and less reliable
in dynamic environments. The Nominal CLF-CBF QP
approach suffers from the highest collision rate (29.8%),
highlighting its limitations in handling dynamic obstacles
with sensor noise.

We next present some qualitative results in Fig. 7
in the same dynamic environment. The robot is tasked
to sequentially visit two waypoints before reaching a
designated goal at (3, 0). In Fig. 7a, at t = 3.4s, the
robot encounters a pedestrian on a collision course
with its planned path to the first waypoint at the top
right. With our CLF-DR-CBF QP controller, the robot
employs a defensive maneuver. This adjustment shows the
methodology’s capability to anticipate potential hazards
and react accordingly.

As the pedestrian clears the immediate area, the robot
resumes its path tracking towards the first waypoint by 5.2s
(Fig. 7b). This behavior highlights the efficiency of our
approach in balancing mission objectives with the need for
safety.

The challenge intensifies at t = 22.8s when another
pedestrian intersects the robot’s planned route (Fig. 7c). In
response, the robot stops to allow the pedestrian to pass
safely. Once the pedestrian has passed, the robot continues

(a) Robot Shape 1 (b) Robot Shape 2

Figure 8. Robot shapes used in real-world experiments.

Figure 9. Comparison of trajectories for the three robot
shapes.

its journey towards the goal, as observed at t = 24.2s
(Fig. 7d).

The successful completion of the task is shown in
Fig. 7e, where the robot reaches its final goal after safely
navigating past all dynamic obstacles at t = 25.64s. This
simulation shows the CLF-DR-CBF QP controller’s ability
for robust path tracking and obstacle avoidance in a
dynamic environment.

9.3 Real-World Experiments
We carried out real-world experiments using a differential-
drive ClearPath Jackal robot (Fig. 1). The robot was
equipped with an Intel i7-9700TE CPU with 32GB RAM,
an Ouster OS1-32 LiDAR, and a UM7 9-axis IMU, and a
velocity controller accepting linear and angular velocity.

Setup: The experiments took place in a lab environment,
designed to test various challenging scenarios. The robot
relied solely on noisy LiDAR measurements for navigation.
We first tested our approach in an area of the lab with static
obstacles, using three different robot shapes: the original
shape (Fig. 1a), Shape 1 (Fig. 8a), and Shape 2 (Fig. 8b).
For quantitative evaluation, we ran 50 trials per shape in
environments populated with randomly placed obstacles
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(a) Thin chair legs (b) Narrow passage with pedestrians (c) Pedestrian approaching

Figure 10. Evaluation of our CLF-DR-CBF QP approach in a real lab environment. The top row illustrates challenging scenarios,
including (a) navigating around thin chair legs, (b) passing through a narrow passage with pedestrians, and (c) handling an
approaching pedestrian. The bottom plot shows the robot’s velocity profile and distance to obstacles over time, with 3 vertical
dotted lines marking the specific time instances corresponding to the challenging scenarios in the top row.

Figure 11. Robot trajectory (blue) and estimated occupancy
map (yellow and gray) of the lab environment.

(e.g., cubes and pyramids) and three randomly walking
pedestrians.

Results and discussion: Figure 9 shows the trajectories
of the robot with the three shapes navigating the same
environment by following a pre-planned path. Notably, the
planned path was generated assuming the nominal robot
shape and did not account for the differences introduced
by Shape 1 and Shape 2. Consequently, the original shape
demonstrates a minimal deviation from the planned path,
whereas Shape 1 exhibits the largest deviations due to its
wider, asymmetrical design.

Table 5. Performance metrics for real-world experiments with
different robot shapes. Metrics include success rate, stuck
rate, and collision rate over 50 trials per shape.

Shape Success(%) Stuck (%) Collision(%)
Original 100 0 0
Shape 1 84 16 0
Shape 2 90 10 0

Table 5 summarizes the results, showing the success,
stuck, and collision rates for the three robot shapes under
the proposed CLF-DR-CBF QP formulation. Our approach
achieved high success rates across all robot shapes,
demonstrating its robustness to variations in geometry and
dynamic obstacles in the environment. In our evaluation,
a robot was considered “stuck” if it did not reach its goal
within 60 seconds.

When the robot shape becomes larger (Shapes 1 and 2),
it is more likely to get stuck due to limited maneuverability
in tight spaces. This is particularly evident for Shape 1,
where the asymmetry makes the robot significantly wider
on one side, further complicating its ability to bypass
obstacles. Additionally, the larger size of Shapes 1 and 2
reduces their ability to navigate around obstacles within
the required time, leading to reduced success rates. Despite
these challenges, all three shapes achieved a 0% collision
rate, demonstrating the effectiveness of our CLF-DR-CBF
QP formulation in maintaining safe navigation.
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Next, we demonstrated the performance of our CLF-DR-
CBF QP formulation using the original robot shape in a full-
lab navigation task. The robot successfully handled various
real-world challenges, such as thin chair legs, narrow
passages with pedestrians, and approaching pedestrians
(Fig. 10). In contrast to the CLF-GP-CBF SOCP
formulation, which relies on GP regression to construct
CBFs and cannot handle dynamic environments effectively,
our CLF-DR-CBF QP formulation maintains safety while
solely depending on noisy LiDAR measurements. The
bottom plot in Fig. 10 presents the distance to the obstacles
and the robot’s velocity profile over time, highlighting the
robot’s ability to maintain a safe distance while efficiently
navigating towards its goal. For more details, please refer to
the accompanying videos on the project webpage†.

Fig. 11 depicts the estimated occupancy map and the
executed trajectory using our CLF-DR-CBF QP controller.
The robot successfully navigates through the cluttered
environment, avoiding both static and dynamic obstacles,
and reaches its desired goal position.

10 Conclusion and Future Work

We introduced a novel strategy for ensuring safety
of mobile robots navigating autonomously in unknown
dynamically changing environments. Our distributionally
robust control barrier function formulation leverages sensor
measurements and state estimates directly, eliminating the
need for precise knowledge of CBFs, which may be
slow and inaccurate to obtain in dynamic environments.
By combining the DR-CBF with a control Lyapunov
function for path tracking, we developed a CLF-DR-
CBF quadratic program that enables safe autonomous
navigation for robots with control-affine dynamics and
arbitrary shape. Our approach underscores the efficiency
and effectiveness of employing sensor-based DR-CBF
constraints to handle uncertainty in measurements and
state estimates. The simulation and experiment results
suggest that further exploration into integrating sensor
measurements and perception estimates directly into the
robot planning and control methods may lead to significant
progress in deploying reliable autonomous robot systems in
the real world.

While our methodology demonstrates robustness and
effectiveness, it has certain limitations. Sections 6 present
a general framework for control-affine systems, relying
on the assumption that valid CBFs with relative degree 1
exist for these systems. However, identifying such functions
can be nontrivial, particularly for complex or high-
dimensional systems. To provide a practical demonstration,
we employed a signed distance function as a CBF for
a differential-drive robot in Section 8 and conducted our
evaluations on this specific model.

Future work will aim to extend this methodology to
more complex robot systems, such as mobile manipulators
and humanoids. Additionally, we plan to explore high-
order control barrier functions to address challenges
associated with designing valid CBFs, further bridging the
gap between theoretical safety assurances and practical
deployments in real-world scenarios.
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