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Physics-Informed Multi-Agent Reinforcement
Learning for Distributed Multi-Robot Problems

Eduardo Sebastián, Thai Duong, Nikolay Atanasov, Eduardo Montijano and Carlos Sagüés

Abstract—The networked nature of multi-robot systems
presents challenges in the context of multi-agent reinforcement
learning. Centralized control policies do not scale with increasing
numbers of robots, whereas independent control policies do not
exploit the information provided by other robots, exhibiting
poor performance in cooperative-competitive tasks. In this work
we propose a physics-informed reinforcement learning approach
able to learn distributed multi-robot control policies that are
both scalable and make use of all the available information to
each robot. Our approach has three key characteristics. First,
it imposes a port-Hamiltonian structure on the policy repre-
sentation, respecting energy conservation properties of physical
robot systems and the networked nature of robot team inter-
actions. Second, it uses self-attention to ensure a sparse policy
representation able to handle time-varying information at each
robot from the interaction graph. Third, we present a soft actor-
critic reinforcement learning algorithm parameterized by our
self-attention port-Hamiltonian control policy, which accounts for
the correlation among robots during training while overcoming
the need of value function factorization. Extensive simulations
in different multi-robot scenarios demonstrate the success of the
proposed approach, surpassing previous multi-robot reinforce-
ment learning solutions in scalability, while achieving similar or
superior performance (with averaged cumulative reward up to
×2 greater than the state-of-the-art with robot teams ×6 larger
than the number of robots at training time). We also validate our
approach on multiple real robots in the Georgia Tech Robotarium
under imperfect communication, demonstrating zero-shot sim-to-
real transfer and scalability across number of robots.

Index Terms—Cooperative control, distributed systems, multi-
robot systems, physics-informed neural networks, reinforcement
learning.

I. INTRODUCTION

MULTI-ROBOT systems promise improved efficiency
and reliability compared to single robots in many appli-

cations, including exploration and mapping [3], [4], agriculture
and herding [5]–[8], and search and rescue [9]. However, the
complexity of describing mathematically the objective and
constraints in many of these problems makes the design of
analytical controllers a challenging task. Multi-agent reinforce-
ment learning [10]–[14] addresses this issue by only requiring
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Fig. 1. Examples of scenarios addressed by our physics-informed multi-
agent reinforcement learning approach. The scenarios cover a wide variety of
cooperative/competitive behaviors and levels of coordination complexity: (a)
robots learn to navigate to landmarks (black dots) while avoiding collisions
with other robots (colored trajectories from pink at t = 0 to blue at t = tf );
(b) robots cooperate to do active LiDAR (star pattern) sampling (orange areas
refer to regions already sampled) in an unknown environment with regions of
low reward (magenta areas) and high reward (green areas); (c) robots (blue
dots) cooperate to transport a square box (red) with unknown mass and that
follows Newtonian dynamics towards a desired region (green dot, box turns
green when it reaches the goal); (d) the robots (blue) collect food (green)
while avoiding collisions with attackers (red), since collision with attackers
lead to deactivation of the robots; (e) joints learn how to coordinate to make
the Half-Cheetah robot walk, where each joint is an independent agent that can
only interact with the adjacent agents (image from [2]); (f) a team of robots
learns to navigate and avoid collisions in a real-world setting characterized
by a tight space and high density of robots.
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a high-level mathematical specification of the task (the reward
function), which is commonly available.

A fundamental limitation of existing multi-agent reinforce-
ment learning approaches is the poor scalability they offer
against increasing and time-varying numbers of robots. Cen-
tralized control policies do not scale whereas independent con-
trol policies neglect the information that other robots can offer.
How to design and train control policies based on neural net-
works that are distributed and use all the available information
is still an open problem [13], [15], [16]. The approach explored
in this paper leverages physical knowledge about the robot
system [17]–[22] to make this possible. Physics-informed
neural networks are becoming popular in different fields, e.g.,
climate science, quantum mechanics or fluid dynamics [23],
[24]. They need less data for training and allow encoding
general constraints found in physical systems. Nonetheless,
they have not been used to learn distributed multi-robot control
policies in multi-agent reinforcement learning.

The main contribution of our work is a novel physics-
informed multi-agent reinforcement learning approach suitable
for general multi-robot problems (Sec. III). The techniques to
make this possible (Sec. IV) are summarized as follows.

• We develop a novel distributed and scalable by design
neural network architecture to describe multi-robot con-
trol policies. This is achieved by combining a physics-
informed port-Hamiltonian description of the multi-robot
system (Sec. IV-A) with self-attention (Sec. IV-B). The
former naturally encodes the distributed nature of the
policy and respects the energy conservation laws of the
individual dynamics of the robots. The latter handles the
information coming from communication or perception
in time-varying neighborhoods.

• We integrate the port-Hamiltonian self-attention policy in
a soft actor-critic reinforcement learning algorithm that
exploits the physics-informed description of the robot
team to impose the sparsity pattern from the interaction
graph in the policy function (Sec. V). To handle the
networked nature of the multi-robot policy and avoid
non-stationarity issues during training, we modify the
acquisition of experience to keep track of the correlations
among robots.

Extensive simulations and real experiments in multi-robot
scenarios (Sec. VI) demonstrate that the combination of
multi-agent reinforcement learning techniques and a physics-
informed description of the system achieves scalable control
policies with similar or superior performance as the state-of-
the-art (Sec. VII).

This paper is an extension of our prior conference paper
[19]. The main difference of this work compared to [19] is
that it addresses a multi-agent reinforcement learning problem
(where only reward samples are provided), whereas [19] solves
a learning-from-demonstrations problem (where data from
an expert control policy is available). This leads to a new
multi-agent reinforcement learning problem formulation and
a substantially different approach beyond the policy parame-
terization, since our new approach involves modifications on
the parameterization of the actor and the replay buffer of the
actor-critic, besides some particularities in the reward function

design and the critic. The neural networks that model the
control policies are different as well, since the multi-agent
reinforcement learning scenarios are continuous-time while
those in [19] are discrete-time. Finally, all experiments in this
paper are new, including an extensive scalability analysis in a
real multi-robot platform involving up to 16 robots in a tight
space.

II. RELATED WORK

A. Learning multi-robot control policies from data

The design of multi-robot control policies deals with two
challenges.

The first challenge is the mathematical formulation of the
problem, where we must consider the task and the constraints
inherited from the cooperative-competitive nature of the multi-
robot team. To address this, recent works exploit machine
learning and focus on learning control policies for optimal
control or reinforcement learning problems [25]–[27]. When
demonstrated data from an expert are available, inverse rein-
forcement learning [28] can be used to learn centralized [29],
[30] or distributed [31], [32] policies from task demonstra-
tions. However, finding experts for multi-robot applications
is difficult. It is also possible to apply supervised learning
approaches to learn multi-robot control policies [33], [34],
but, again, collecting labeled trajectories is hard. Therefore,
in this work we use reinforcement learning, because a reward
function is a high-level description of the task that is easy to
build and is typically available.

The second challenge is that the learning and execution of
control policies for multi-robot systems should scale favorably
with an increasing numbers of robots. Learning a joint policy
function is challenging due to the exponential growth of
the state and action space [35]. Attention mechanisms are
widely used in multi-agent reinforcement learning problems
[36]–[39] to enhance the performance of centralized training
settings where the agents are isolated from each other and
do not consider communication during deployment. Graph
neural networks [13] have been utilized as a stable [40],
scalable and communication-aware policy representation in
path planning, coverage, exploration, and flocking problems
[41]–[46]. These approaches assume discrete robot dynamics,
fixed or known communication topology, or prior knowledge
on the formulation of the control policy. In contrast, by using a
port-Hamiltonian formulation and self-attention mechanisms,
our approach directly learns control policies that handle time-
varying neighbors, do not constrain the size of the neigh-
borhoods, and learn constraints such as collision avoidance
without specific mathematical formulation.

B. Multi-agent reinforcement learning for robotic problems

Multi-agent reinforcement learning extends reinforcement
learning approaches to problems where multiple agents inter-
act in the environment [47]–[52]. The first multi-agent rein-
forcement learning approaches considered centralized policies
where the states, actions and observations of every agent are
globally known by a central unit during deployment [10]. The
complexity of these approaches exponentially scales with the
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number of agents, so they are not feasible in practice. In the
absence of a centralized policy, the Markov game modeling
the problem becomes non-stationary [53]–[55]. The task is no
longer stationary because the policies of all the other agents
are changing, and so the environment itself. As a consequence,
it is not possible to reach an equilibrium in training.

To solve the non-stationarity issue, a common approach is to
factorize the value and/or policy functions. The most common
factorization, the so-called centralized-training decentralized-
execution, departs from centralized-training reinforcement
learning approaches [56]–[58] and considers that the agents
act independently. To provide some global information to the
agents, agents learn an approximation of the other agents’
control policies [59]–[61]. However, this proxy is only used
during training and, since the resulting control policies only
use the individual observations, the performance deteriorates
the number of robots change. This aspect is partially overcome
by considering heterogeneous agents [62] but scalability is de-
teriorated again in large teams because the agents do not learn
how to exploit neighboring information effectively. Another
option is to provide each agent with a global estimator that
predicts the trajectories of the whole multi-robot team [63] or
to implicitly learn to coordinate with other agents through the
value function [55]. In mean field approaches [64], the multi-
agent game is reduced to an interaction between an agent
and the average of the other agents, which is not practical.
To overcome these issues, we propose a new formulation of
the policy function that is distributed by design and captures
the underlying interaction graph that describes the multi-robot
system.

Other works focus on more complex factorizations that
account for local interactions among neighboring agents in
the value function. For instance, the value function can be
approximated as dependent on the neighbors only [65]. Either
using analytical [16], [35], [66] or learned [67]–[69] factor-
izations, the control policies are still restricted to the same
team size used during training because the policies do not
explicitly consider communication. Closely related to ours,
the authors of [70] propose an end-to-end neural network
based on attention to achieve scalability of the control policy
in quadrotor swarm navigation problems. Similarly, by using
a port-Hamiltonian description of the system, our approach
avoids factorizing the reward or the value functions, thus fully
exploiting the available information in the experience while
learning scalable distributed control policies.

C. Physics-informed neural networks for robotic problems

While black-box neural networks are widely used for learn-
ing control policies, they do not encode energy conservation
and kinematic constraints satisfied by physical robot systems.
Failing to infer them from data may result in unstable behav-
iors. Moreover, other constraints are present that come from
the perception and communication modules of the robots and
which restrict the information available to the robot. Similar
issues are found in other physical applications [24], leading
to physics-informed neural network [23], neural networks that
use the differential equations that model physical systems as

building blocks. The use of physics-informed machine learning
for robotics and control is very recent [20]–[22], [71], [72]
and focuses on centralized controllers. Nevertheless, physics-
informed neural network can also be used to address the
learning of cooperative distributed control policies.

Many dynamical systems–from robots interacting with their
surroundings to large-scale multi-physics systems–involve a
number of interacting subsystems. This compositional property
can be exploited [18] to train neural network sub-models from
data generated by simple sub-systems, and the dynamics of
more complex composite systems are then predicted without
requiring additional data. The systems are represented as
a port-Hamiltonian neural network [17], a class of neural
ordinary differential equations that uses a port-Hamiltonian
dynamics formulation as inductive bias [73]. A key contri-
bution of our work is to represent the robot team as a port-
Hamiltonian system and learn distributed control policies by
modeling robot interactions as energy exchanges. The use
of Hamiltonian mechanics has been explored for centralized
control policies or distributed but fixed-time known topolo-
gies [74]–[76]. Meanwhile, our work achieves scalability with
a time-varying topology by modeling robot interactions using
self-attention [77].

III. PROBLEM FORMULATION

Consider a team of robots, indexed by V = {1, . . . , n}.
The robot team motion is governed by known continuous-time
control-affine stochastic dynamics:

ẋ(t) = f(x(t),u(t)) + Lω(t), (1)

where x(t) = [(x1(t))⊤, . . . , (xn(t))⊤] ∈ X ⊆ Rn×nx

is the joint state of the robot team at time t ≥ 0, with
xi(t) the state of robot i at time t. On the other hand,
u = [(u1(t))⊤, . . . , (un(t))⊤] ∈ U ⊆ Rn×nu is the joint in-
put, with ui(t) the input of robot i at time t. The term ω(t)
is white noise modeling the uncertainty in the robot sensors
and actuators and Ξ = LL⊤ is the noise diffusion matrix.
Let {tτ}∞τ=0 be a sequence of discrete time instants such that
tτ+1 − tτ = Tτ > 0 and assume zero-order hold inputs such
that u(t) = u(tτ ), ∀t ∈ [tτ , tτ+1). Then, from Eq. (1), we can
obtain an Euler discretization of the dynamics with discrete-
time state sτ = x(tτ ), action aτ = u(tτ ), and dynamics:

sτ+1 = sτ + Tτ f(sτ ,aτ ) + nτ , (2)

where nτ is zero-mean Gaussian noise with covariance TΞ.
We will formulate the dynamics f using port-Hamiltonian
mechanics as its modularity in terms of energy effectively
describes the networked interactions in a robot team.

The multi-robot task and the interactions among the robots
are modeled as a Markov Decision Process (MDP), defined
as a tuple (X ,U , p, r, γ). In the tuple, p : X × X × U → R
is the probability density of the next joint state sτ+1 con-
ditioned on the current joint state sτ and joint action aτ ,
r : X × U → [rmin, rmax] is a reward function encoding the
objectives of the multi-robot task, and γ ∈ (0, 1) is the
discount factor. Whereas the robot dynamics are formulated
in continuous time, the MDP is formulated in discrete time
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based on the zero-order hold discretization in Eq. (2). Ac-
cordingly, p(sτ+1|sτ ,aτ ) is a Gaussian density with mean
sτ + T f(sτ ,aτ ) and covariance TΞ.

The robots interact in a distributed manner, described by
a time-varying undirected graph Gτ = (V, Eτ ), where Eτ ⊆
V × V is the set of edges. An edge (i, j) ∈ Eτ exists when
robots i and j interact at time τ . Let Aτ ∈ {0, 1}n×n be
the adjacency matrix associated to Gτ , such that [Aτ ]ij = 1
if and only if (i, j) ∈ Eτ , and 0 otherwise. The set of k-hop
neighbors of robot i at time τ is N i,k

τ = {j ∈ V | [Ak
τ ]ij ̸= 0},

where Ak
τ is the k-th power of matrix Aτ . We remark that

N i,k
τ includes robot i.
The goal of this work is to learn distributed control policies

that solve a given multi-robot task, such that they respect the
networked structure of the multi-robot team and the MDP
model. We represent the policies as stochastic Markov control
policies that depend on the k-hop neighbors of robot i:

aiτ ∼ πθ

(
aiτ |siN i,k

τ

)
. (3)

Here, si
N i,k

τ
= {sjτ |j ∈ N i,k

τ } denotes the states of robot
i and its k-hop neighbors, and θ denotes the control pol-
icy parameters. The use of a stochastic Markov policy is
not only motivated by the MDP model but also by the
fact that distributed control policies are prone to uncer-
tainty from the communication-perception modules, control
goals, and interaction with the environment. We assume
that the policy in Eq. (3) is the same for all the robots.
The joint control policy of all the robots is denoted by
Πθ = [π⊤

θ

(
a1τ |s1N 1,k

τ

)
, . . . ,π⊤

θ

(
anτ |snNn,k

τ

)
]⊤.

Learning a distributed control policy πθ that solves a
certain multi-robot task is equivalently posed as learning the
parameters θ such that πθ maximizes the expected sum of
rewards over time, i.e.,

max
θ

QΠθ
(s,a) = (4)

max
θ

Esτ∼pEaτ∼Πθ(·|sτ )

[ ∞∑
τ=0

γτr(sτ ,aτ )|s0 = s,a0 = a

]
.

In Eq. (4), the function QΠθ
(s,a) is known as the action-value

(Q) function associated with the policy Πθ [48].
We do not make any assumptions on the reward function

or action-value function, such as a specific factorization [16],
[35]. The purpose of this work is to design a control policy
that maximizes QΠθ

(s,a) and enforces the distributed factor-
ization expressed in Eq. (3).

IV. PHYSICS-INFORMED MULTI-AGENT
REINFORCEMENT LEARNING

In this section, we present a novel physics-informed multi-
agent reinforcement learning approach to find distributed con-
trol policies that solve multi-robot tasks as defined in Eq. (4),
under the restrictions on the robot dynamics and available
information defined in Eq. (3). Our formulation is done in
continuous time, following the continuous-time definition of
the robot dynamics in Eq. (1). Later, zero-order hold control
is used to utilize a discrete-time version of the control policies
in the reinforcement learning algorithm.

First, we present a port-Hamiltonian formulation of the
multi-robot dynamics and an energy-based distributed control
design that can shape the interactions and the Hamiltonian
of the closed-loop system (Sec. IV-A). Given experience
from trial and error simulations, we employ a self-attention
mechanism to learn the parameters of the control policy that
maximize the cumulative reward (Sec. IV-B). To simplify the
notation, we omit the time dependence of the states x and
controls u in the reminder of the paper. To facilitate the
exposition, in Sec. IV-A and IV-B we assume that the robot
dynamics and control policies are deterministic. In Sec. V, we
explain how to return to the stochastic setting.

A. Port-Hamiltonian dynamics for multi-robot energy conser-
vation

Port-Hamiltonian mechanics are a general yet interpretable
modeling approach for learning and control. On the one hand,
many physical networked systems can be described as a port-
Hamiltonian system [74] using the same formulation and with
a modular and distributed interpretation. Meanwhile, the port-
Hamiltonian description allows to derive general energy-based
controllers with closed-loop stability guarantees. Since robots
are physical systems that satisfy Hamiltonian mechanics, we
model each robot as a port-Hamiltonian system [73]:

ẋi =
(
Ji(xi)−Ri(xi)

) ∂Hi(xi)

∂xi
+ Fi(xi)ui, (5)

where the skew-symmetric interconnection matrix Ji(xi)
represents energy exchange within a robot, the positive-
semidefinite dissipation matrix Ri(xi) represents energy dis-
sipation, the Hamiltonian Hi(xi) represents the total energy,
and the matrix Fi(xi) is the input gain.

The interconnection of port-Hamiltonian systems leads to
another port-Hamiltonian system [78]. Therefore, if the control
and state of each robot are considered as input and output
energy ports, then, due to the modularity of port-Hamiltonian
dynamics, the multi-robot system with joint state x also
follows port-Hamiltonian dynamics:

ẋ = (J(x)−R(x))
∂H(x)

∂x
+ F(x)u, (6)

where J(x), R(x), and F(x) are block-diagonal:

J(x) = diag
(
J1(x1), . . . ,Jn(xn)

)
,

R(x) = diag
(
R1(x1), . . . ,Rn(xn)

)
,

F(x) = diag
(
F1(x1), . . . ,Fn(xn)

)
,

(7)

and H(x) =
∑n

i=1H
i(xi). It is noteworthy that the

expression in Eq. (6) is control-affine and follows the
definition of Eq. (1), with f(x,u) = h(x) + g(x)u,
h(x) = (J(x)−R(x)) ∂H(x)

∂x , g(x) = F(x), and L = 0
since we are considering a deterministic setting for now.

Without control, the trajectories of the open-loop system in
(6) would follow the dynamics of the robots in the absence
of interactions with the environment or other robots. The
dynamics need to be controlled by a policy in order to accom-
plish the desired task. We propose to design a control policy
µθ(x) and, then, obtain the desired policy in Eq. (3). Policy
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µθ(x) is designed using an interconnection and damping
assignment passivity-based control (IDA-PBC) approach [73],
which injects additional energy in the system through the
control input u to obtain closed-loop dynamics that achieve
the desired task:

ẋ = (Jθ(x)−Rθ(x))
∂Hθ(x)

∂x
, (8)

with Hamiltonian Hθ(x), skew-symmetric interconnection
matrix Jθ(x), and positive semidefinite dissipation matrix
Rθ(x), which depend on the control policy µθ(x). By match-
ing the terms in (6) and (8), one obtains the joint policy:

u = Πθ(x) = (9)

F†(x)

(
(Jθ(x)−Rθ(x))

∂Hθ(x)

∂x
−(J(x)−R(x))

∂H(x)

∂x

)
,

where F†(x) =
(
F⊤(x)F(x)

)−1
F⊤(x) is the pseudo-inverse

of F(x).
If the robots are fully-actuated, i.e., F(x) is full-rank, then

the input u in (9) exactly transforms the open loop system
in (6) to the closed-loop system in (8). For underactuated
systems, the transformation may not be exact [79]. Being
able to maximize QΠθ

is, hence, related to whether the robot
configurations that solve the task are realizable by the class
of control policies in (9). Even if goals of the task are not
realizable, the policy parameters θ may still be optimized to
achieve a behavior as good as possible to solve the task.

Let [Jθ(x)]ij and [Rθ(x)]ij denote the nx × nx blocks
with index (i, j), representing the energy exchange between
robot i and j and the energy dissipation of robot i caused
by robot j, respectively. Since the input gain F(x) in (7) is
block-diagonal, the individual control policy of robot i is:

µθ(x) = (Fi)†(xi)

(∑
j∈V

([Jθ(x)]ij − [Rθ(x)]ij)
∂Hθ(x)

∂xj

−
(
Ji(xi)−Ri(xi)

) ∂Hi(x)

∂xi

)
. (10)

Note that the individual control policy µθ(x) in (10) does not
necessarily respect the hops in the communication network as
desired in (3) because it depends on the structure of Jθ(x),
Rθ(x), and Hθ(x). In Sec. IV-B, we impose conditions on
these terms to ensure that they respect the communication
topology and are skew-symmetric, positive semidefinite and
positive respectively, as required for a valid port-Hamiltonian
system and to find a policy µθ that only depends on the k-hop
neighbors.

B. Self-attention parameterization to enforce communication
patterns

We seek to learn distributed control policies that follow
the structure of Eqs. (9)-(10) and (i) scale with the number
of robots, (ii) handle time-varying communication and (iii)
guarantee the port-Hamiltonian constraints. To do so, we
first derive conditions on the port-Hamiltonian terms of the
controller, Jθ(x), Rθ(x) and Hθ(x), which are the terms to be
learned from the reinforcement learning experience. Then, we
develop a novel architecture based on self-attention to ensure

that the learned control policies guarantee the desired require-
ments. We summarize the overall neural network architecture
in Fig. 2.

To respect the robot team topology defined by the graph G,
we first impose Jθ(x) and Rθ(x) to be block-sparse,

[Jθ(x)]ij = [Rθ(x)]ij = 0, ∀j /∈ N i,k. (11)

From the perspective of robot i, this means that the controller
only considers information from its k-hop neighbors. More-
over, we require that the desired Hamiltonian factorizes over
the k-hop neighborhoods:

Hθ(x) =
n∑

i=0

Hi
θ(x

i
N i,k), (12)

with xi
N i,k = {xj |j ∈ N i,k}. The factorization in (12) ensures

that each robot i can calculate

∂Hθ(x)

∂xi
=

∑
j∈N i,k

∂Hj
θ(x

j
N j,k)

∂xi
(13)

by gathering ∂Hj
θ(x

j
N j,k)/∂x

i from its k-hop neighbors.
Then, the control policy µθ of robot i becomes:

µθ(x) = (Fi(xi))†
( ∑

j∈N i,k

([Jθ(x)]ij−[Rθ(x)]ij)
∂Hθ(x)

∂xj

−
(
Ji(xi)−Ri(xi)

) ∂Hi(x)

∂xi

)
. (14)

Imposing the requirements in (11)-(12) is a first step towards
making the control policy in (14) distributed. Note that the
terms [Jθ(x)]ij and [Rθ(x)]ij might still depend on the joint
state vector x even though the sum runs over the k-hop
neighbors in N i,k. Next, we discuss how to remove this
dependence and achieve a similar factorization as (12).

First, we model [Jθ(x)]ij , [Rθ(x)]ij , and Hi
θ(x) in Eq. (14)

with the parameters θ shared across the robots, so that the team
can handle time-varying communication graphs. Specifically,
we propose a novel architecture based on self-attention [77].
Self-attention layers extract the relationships among the inputs
of a sequence by calculating the importance associated to each
input using an attention map. The length of the sequences
can vary as the number of parameters of the self-attention is
constant with the number of inputs. Our key idea is to consider
the self and neighboring states as the sequence, where each
neighbor’s state is an input. We now detail how to model each
of the port-Hamiltonian terms.

To learn [Rθ(x)]ij , robot i will use, at instant t, the state xj

from all k-hop neighbors j ∈ N i,k. The sequence of states is
given by xi

N i,k . The proposed architecture is composed by a
sequence of layers, indexed using the subscript w = 1, . . . ,W .
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Fig. 2. Physics-informed policy parameterization. At each instant, robot i receives state information from its neighbors, typically associated
to a perception or communication range. Then, three self-attention-based modules, each one associated to a component of the desired closed-
loop port-Hamiltonian dynamics ([Rθ(x)]ij , [Jθ(x)]ij , Hi

θ(x)), use the information from the neighbors to compute the parameters of an
interconnection and damping assignment passivity-based control (IDA-PBC) policy, which is then used to execute the desired control action.

Following a self-attention mechanism, each layer computes the
operations presented below:

Qi
1 = AR

1 xi
N i,k , Ki

1 = BR
1 xi

N i,k , Vi
1 = CR

1 xi
N i,k

Yi
1 = χ

(
softmax

(
β(Qi

1)β((K
i
1)

⊤)√
|N i,k|

)
β(Vi

1)

)
,

Xi
1 = ψ(DR

1 Yi
1),

...

Qi
w = AR

wXi
w−1, Ki

w = BR
wXi

w−1, Vi
w = CR

wXi
w−1

Yi
w = χ

(
softmax

(
β(Qi

w)β((K
i
w)

⊤)√
|N i,k|

)
β(Vi

w)

)
,

Xi
w = ψ(DR

wYi
w),

(15)

where β(·), χ(·), and ψ(·) are nonlinear activation functions.
In the aforementioned operations, AR

w ,B
R
w ,C

R
w ∈ Rrw×hw

and DR
w ∈ Rnx×rw for w = 1, . . . ,W are matrices to be

learned and shared across robots; and hw, rw, dw > 0, with
dW = nx and h1 = nx for valid matrix multiplications. Ma-
trices AR

w ,B
R
w ,C

R
w are of fixed size, so they are independent

of the number of robots and neighbors. Thus, robot i can
deal with time-varying neighbors. In particular, AR

1 ,B
R
1 ,C

R
1

transforms the states to features encoded in the query Qi
1, key

Ki
1 and value Vi

1 matrices. Then, [Rθ(x)]ij is constructed
as a weighted matrix that models the interactions of robot i
with its k-hop neighbors, and a diagonal positive semidefinite
matrix that accounts for the self-interactions:

ZR
ij = diag(xi,j

W ),

[Rθ(x)]ij = −(ZR
ij + ZR

ji), ∀j ∈ N i,k,

[Rθ(x)]ii = ZR
ii +

∑
j∈N i,k

(ZR
ij + ZR

ji),
(16)

where xi,j
W is the column that corresponds to neighbor j in

Xi
W , and diag(·) is the operator that reshapes the nx × 1

vector to a nx×nx diagonal matrix. If the nonlinear activation
function ψ(·) is designed such that the elements of the output
Xi

W are positive, then ZR
ij is a diagonal positive semidefinite

matrix and Rθ(x) is a diagonally dominant matrix. This way,
Rθ(x) is positive semidefinite by design. In fact, note the
similarities between (16) and a weighted Laplacian matrix.
More importantly, each element [Rθ(x)]ij depends only on the
information from robot i and its neighbor j, so the computation
is distributed.

To learn [Jθ(x)]ij , we follow the same steps in (15), with
parameters AJ

w,B
J
w,C

J
w,D

J
w instead of AR

w ,B
R
w ,C

R
w ,D

R
w ,

to obtain encodings ZJ
ij instead of ZR

ij . Due to the reciprocal
communication between robots i and j, we enforce the skew-
symmetry of Jθ(x) by:

[Jθ(x)]ij = ZJ
ij − ZJ

ji ∀j ∈ N i,k. (17)

Since [Jθ(x)]ii = 0, the interconnection matrix is such
that Jθ(x) + J⊤

θ (x) = 0 and, thus, is skew-symmetric by
design. Again, each element [Jθ(x)]ij depends only on the
information from robot i and its neighbor j, so the computation
is distributed.

Finally, to learn Hi
θ(x

i
N i,k), we represent it as follows:

Hi
θ(x

i
N i,k) = vec(xi

N i,k)
⊤Mi

θ(x
i
N i,k)vec(x

i
N i,k)+U

i
θ(x

i
N i,k).
(18)

The first term in the right-hand side of Eq. (18) is a kinetic-
like energy function and the second terms is a potential energy
function with

Mi
θ(x

i
N i,k) = diag(1⊤ZM

i ) and U i
θ(x

i
N i,k) = 1⊤ZU

i 1.

The encodings ZM
i and ZU

i are calculated using the same
steps in (15), with parameters AM

w , BM
w , CM

w , DM
w and

AU
w , BU

w , CU
w , DU

w , respectively. Once we have Hi
θ(x

i
N i,k),

we obtain ∂Hj
θ(x

j
N j,k)/∂x

i from all the neighboring robots
and compute Eq. (13). Therefore, since all the operations are
only dependent on the available information in robot i and
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its neighbor j, the computations involving the Hamiltonian
function are distributed by design.

To deploy the control policy (14), we design a message
mi,j

τ , encoding information that robot i needs from robot j at
time τ to calculate [Jθ(x)]ij , [Rθ(x)]ij , and Hi

θ(x). When
there is no communication among robots, i.e., k = 0, no
message is needed. For k ≥ 1, robot i uses the following
communication protocol:

1) Robot i receives messages mi,j
τ,1 = xj from its k-hop

neighbors in N i,k. Then, robot i computes ZR
ij , ZJ

ij , Hi
θ,

and ∂Hi
θ/∂xj .

2) Robot i receives messages mi,j
τ,2 = {∂Hj

θ/∂xi,Z
R
ji,Z

J
ij}

from its k-hop neighbors in N i,k and computes
∂Hθ/∂xi, [Jθ]ij , [Rθ]ij .

3) Robot i receives messages mi,j
τ,3 = ∂Hθ/∂xj from its

k-hop neighbors in N i,k and computes the control input
ai.

In summary, each robot i receives a message
mi,j

τ = [mi,j
τ,1,m

i,j
τ,2,m

i,j
τ,3] in 3 communication rounds

from its neighboring robot j. We assume negligible delays
between communication rounds. If the delay is large, Wang
et al. [65] suggest to learn a function that predicts quantities
such as ∂Hθ(x)/∂xj , ZJ

ji, Z
R
ji, leading to one communication

round. We leave this for future work.

V. PHYSICS-INFORMED MULTI-ROBOT SOFT ACTOR-CRITIC

The previous section describes how to parameterize the
distributed control policies to be learned. In this section, we
present a soft actor-critic algorithm [80] to train the self-
attention port-Hamiltonian neural network, detailing the main
features that allow the integration of our physics-informed
policy representation. The key components are presented in
Fig. 3, namely: (a) actor, (b) environment, (c) reward, and (d)
critic.

A. The actor

First, we model the actor with the port-Hamiltonian system
detailed in Sec. IV-A and we use the IDA-PBC policy in
Eq. (14) parameterized by the self-attention architecture pro-
posed in Sec. IV-B. The known robot dynamics are typically
provided by the simulation environments or the hardware
specifications of the robots [81]. Nevertheless, two aspects
must be adapted to match the soft actor-critic formulation: (i)
the MDP formulation and the stochastic Markov policy are in
discrete time while the robot dynamics and the IDA-PBC are
in continuous-time, and (ii) the actions in the soft actor-critic
method are stochastic while the port-Hamiltonian formulation
is deterministic.

To address the continuous versus discrete time mismatch,
we use the zero-order hold control approach described in
Sec. III. More specifically, u(t) = aτ = µθ(x(tτ )) for
t ∈ [tτ , tτ+1). This means that we can write the control
policy as dependent on the discrete-time state sτ rather than
the continuous-time state x(tτ ), leading to µθ(sτ ) with the
same expression in Eq. (14).

To address stochasticity and maintain the desired distributed
structure already derived in Sec. IV-A and IV-B, we model

the distributed control policies as (squashed) Gaussian distri-
butions, whose mean is given by the IDA-PBC controller in
(14), therefore respecting the distributed policy factorization.
Meanwhile, the variance of the policy distribution is provided
by a neural network that is learned during training. Overall,
we obtain a distributed and stochastic Markov control policy
of the form:

aiτ ∼ πθ(a
i
τ |siN i,k

τ
) = tanh(µθ(s

i
N i,k

τ
) + σϱ(a

i
τ , s

i
N i,k

τ
)ξ),

(19)
where µθ(s

i
N i,k

τ
) is the IDA-PBC policy parameterized by

self-attention neural networks under the restrictions imposed
by the networked structure of the robot team.

On the other hand, σϱ(a
i
τ , s

i
N i,k

τ
) is a vector of standard

deviations given by a neural network that approximates the
variance of the squashed Gaussian distribution with parameters
ϱ. Besides, ξ ∼ N (0, I), so the control policy is a Gaussian
distribution with mean µθ(s

i
N i,k

τ
) and diagonal covariance

matrix whose diagonal is equal to (σϱ(a
i
τ , s

i
N i,k

τ
))2. The

control is constrained to aiτ ∈ [−1, 1]nu by means of a
tanh function [56], [80], [82], leading to a squashed Gaussian
policy. In practice, the control input can be constrained to
aiτ ∈ [amin, amax]

nu with −∞ < amin ≤ amax < ∞ by
scaling the output of the tanh function. It is also important
to remark that σϱ(a

i
τ , s

i
N i,k

τ
) only depends on the available

information at each robot, such that the desired distributed
factorization of the control policy is preserved.

During training, the control inputs are sampled from the
Gaussian distribution, as stated in Eq. (3). After training, the
mean control input is chosen, i.e., aiτ = tanh(µθ(s

i
N i,k

τ
)).

In the case that an additional layer of robust, adaptive or
active control is desired, then σϱ(a

i
τ , s

i
N i,k

τ
) can be used as

a proxy of the uncertainty in the control policy, since it only
depends on the neighboring information at robot i. The design
of σϱ(a

i
τ , s

i
N i,k

τ
) is free to choose, but in this work we opt for

the same architecture in Eq. (15).

B. The environment
The second modification over the soft actor-critic algorithm

is in the collection of experiences from the environment. The
environment is determined by the desired task to be solved,
with examples found in Fig. 1. The main difference with other
multi-agent reinforcement learning works is that, to build the
replay buffer that stores the trial and error experience used
for training the control policies, we take into account all the
interactions among the robots. Differently from centralized-
training decentralized-deployment approaches, where the ex-
perience of each agent is recorded independently of the other
agents, we record for each experience all the robot states,
actions, and interaction graph together. Thanks to that, we keep
track of the correlation among robots during training. This
also allows us to condition the trained control policies on the
available information at each robot, therefore only providing
the information robots will have access during deployment.

C. The reward
The reward function can be shared across robots and in-

clude global terms because the actor is the whole multi-robot
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(a) Actor

(b) Environment

(d) Critic

(c) Global Reward
replay buffer

robot 1

robot 2

robot n

random

batch

value iteration

graph record

Fig. 3. Overview of our physics-informed soft actor-critic multi-agent reinforcement learning approach. The main differences with respect
of other actor-critic methods are the following: (a) the actor is the multi-robot network modeled as a port-Hamiltonian system with a
self-attention-based IDA-PBC policy; (b) the replay buffer not only stores actions, states and rewards, but also the graph structure of the
multi-robot network to enforce the desired distributed structure; (c) the reward is global because the actor is the whole multi-robot team and
the physics-informed parameterization conditions the policy on the graph structure of the team; (d) the output of the critic is shared across
robots and the policy parameters are the same for all robots, so for the same critic gradient step, n policy gradient steps are taken.

network. This is important because, from the perspective of
the soft actor-critic algorithm during training, the whole robot
network is a single centralized agent. Other state-of-the-art
multi-agent reinforcement learning approaches (see Sec. II)
require a factorization of the reward function because each
agent is considered as an isolated learning unit which does
not exploit neighboring information during the execution of
the control policy. In contrast, in our approach the shared
distributed control policy is simultaneously learned at all the
robots used in training, and since the experience records the
underlying communication graph, we can seamlessly associate
global rewards with distributed cooperative control policies
through communication. It is worth to note that, as in any clas-
sical soft actor-critic approach, the maximization objective is
changed to include an entropy term H(Πθ(a|s)) that measures
the entropy of the control policy. This entropy term, weighted
by a temperature parameter α > 0, trades off exploration
(high value) and exploitation (low value). The value of α
changes over time according to a gradient descend law which
manages automatically the exploration/exploitation dichotomy.
The details of this automatic temperature adjustment rule can
be found in [80].

D. The critic

Finally, regarding the critic, its main purpose is to learn
the action-value function of the environment, encoded in
QΠθ

(s,a). This approximation steers the training of the con-
trol policy towards the maximization objective. Nevertheless
and importantly, the critic is only used during training. Thus, it
is not necessary to design it to be distributed and an existing
centralized neural network architecture can be used. In this

work, we opt for a multi-layer perceptron with parameters
ϑ to learn Qϑ,Πθ

(s,a). As with the reward, since, from
the perspective of the soft actor-critic algorithm, the single
agent is the whole robot network described by the port-
Hamiltonian dynamics, a single centralized critic can learn
the appropriate action-value function to condition the training
of the distributed control policy.

A shared centralized action value function implies that
each optimization step considers, simultaneously, all the poli-
cies gathered in the joint policy Πθ. Since the policies
are homogeneous, each optimization step is simultaneously
updating the policy πθ n times. This is achieved without any
particular specification of the gradients nor factorization of
the action value function. This is one of the key properties
and advantages of our proposed soft actor-critic algorithm
compared to other state-of-the-art algorithms. Typical multi-
agent reinforcement learning approaches, by factorizing the
policy and/or the value functions, arrive to a different set
of policy parameters, one per agent used in training. In
cooperative tasks where the robots share the same goal, there
should be a single policy that resolves the task independently
on the configuration of the robot. In our case, by appropriately
integrating the modular port-Hamiltonian description of the
multi-robot system with the soft actor-critic algorithm, we train
a single distributed control policy which takes into account
the current available information at each robot. Using the soft
actor-critic update rules [56], [80], [82], the gradients with
respect to θ are, simultaneously for all the robots, already
conditioned on the multi-robot communication topology.

In conclusion, in contrast with other solutions, ours explic-
itly considers the exchanges of information among robots by

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3582836

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

modeling the multi-robot system as a graph. This allows to use
a reinforcement learning algorithm for single-robot problems,
where the single agent is the multi-robot network. From the
perspective of the reinforcement learning algorithm, the actor
is centralized. However, by means of a physics-informed self-
attention parameterization of the dynamics and control of the
robots, the learned policies are distributed by design, modeling
the robot team as a modular port-Hamiltonian system.

VI. RESULTS

To assess our physics-informed multi-agent reinforcement
learning approach, we present seven multi-robot scenarios.
The first three are extracted from the VMAS simulator [81].
The next three are adaptations from the MPE simulator [59],
[83] that can be found in [65]. The last scenario comes from
the Multi-Agent MuJoCo benchmark [2]. The overview of the
scenarios are detailed in the following:

a) Reverse transport: the robots are randomly spawned
inside a box that they must push towards a desired
landmark in the arena. The initial position of the box and
the landmark is random. Compared to [81], we decrease
the mass of the box to 1 kg to ensure that the box can be
moved even with a small number of robots. Also, when
the box is in the landmark, the reward is set to 1.

b) Sampling: the robot team is randomly spawned in an
arena with an underlying Gaussian density function com-
posed of 3 modes. The field is discretized to a grid.
Robots must collect samples of the field such that once
a robot visits a cell its sample is collected without
replacement and given as reward to the team. Robots use a
LiDAR to sense each other, and they observe the samples
in the 3× 3 grid around it.

c) Navigation: each robot has a landmark to reach. The
initial position of the robots and landmarks are randomly
spawned in a 2×2m square arena. Robots must navigate
to reach their corresponding landmarks while avoiding
collisions with other robots. Compared to [81], we en-
courage collision avoidance by changing the collision
penalty from −1 to −5. Besides, each robot only observes
its desired landmark instead of all the landmarks.

d) Food collection: it is a version of the simple spread
scenario [59] where a team of robots and food landmarks
is randomly spawned in an arena. There are as many
landmarks as robots. Robots must cooperate to cover as
many food landmarks as possible. Each time a robot
covers a new landmark, the whole team is rewarded.

e) Grassland: A team of robots must collect food resources
that are randomly spawned in an arena, while evading
multiple predators. There are as many robots as predators,
and the former move twice faster than the latter. The
predator team is positively rewarded when some member
captures a robot, whereas the robot team is negatively
rewarded and the robot is deactivated. On the other hand,
the robots receive a positive reward if they reach a food
landmark, which is then spawned again in a new position.

f) Adversarial: two robotic teams compete for the same
food landmarks. Both teams have the same number of

robots. When a member of a team reaches a food land-
mark, the landmark is randomly spawned and the team is
positively rewarded. When two members of a team collide
with one member of the other team, then the first team is
positively rewarded, while the second team is penalized
and the robot deactivated.

g) 6x1-Half Cheetah: a robotic cheetah with two legs and
6 joints, where each joint is a different agent. The multi-
agent team is distributed in the sense that each agent can
communicate only with the adjacent joints, enforced by a
ring graph topology. The task is to make the robot run as
fast as possible. The reward is global and is composed by
a first term that favours forward movements and a second
term that penalizes too large actions.

The first three scenarios are used for ablation studies, where
the main goal is to evaluate how our physics-informed pol-
icy parameterization improves upon existing standard policy
parameterizations. The second three are used to compare our
method with other state-of-the-art multi-agent reinforcement
learning approaches that are not physics-informed. The last
scenario is used to validate our approach in a realistic robotic
platform.

All robots have a communication radius rcomm > 0 which
allows to exchange information with 1-hop neighbors. The
communication radius and other hyperparameters of the soft
actor-critic algorithm are specified in Appendix B. Each robot
observes its position, velocity, position and velocity of the
landmarks or objects of interest (e.g., the box in reverse trans-
port). The particularities of the observation space of each robot
can be found in [59], [65], [81]. In some scenarios, the robot
observation vector changes its dimension depending on the
number of robots. Specifically, in the food collection, grassland
and adversarial scenarios the number of landmarks changes
with the number of robots. Therefore, to accommodate the
proposed self-attention port-Hamiltonian neural network with
an observation vector which may change its size, we use
an additional neural network to pre-process the observation
vector. In particular, we concatenate a self-attention layer with
a dense layer which receives, as input, the food landmarks’
positions and outputs a feature vector of constant dimension
that is used as part of the state vector to build Si

t. The details
can be found in Appendix A. Supplementary material can be
found in our repository1 and the supplementary video2.

A. Ablation results

We conduct ablation studies using the reverse transport,
sampling and navigation scenarios. The goal is to evaluate
whether our physics-informed policy parameterization im-
proves upon existing standard policy parameterizations. We
compare the proposed self-attention port-Hamiltonian neural
network (pH-MARL) with a classical multi-layer perceptron
(MLP), a modular self-attention-based neural network (MSA)
and a graph- and attention-based neural network (GSA). The
implementation details can be found in Appendix A.

1https://github.com/EduardoSebastianRodriguez/phMARL
2https://youtu.be/pSzP3LBVyZg
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(a) Reverse transport (b) Sampling (c) Navigation

Fig. 4. Comparison of the performance of the ablated control policies when we scale the number of robots in deployment. In all the scenarios, our proposed
combination of a port-Hamiltonian modeling and self-attention-based neural networks achieves the best cumulative reward without further training the control
policy. Each bar displays the mean and standard deviation of R̄ over 10 evaluation episodes.

The MLP network is an unstructured neural network that
receives, as input, the current states and actions of the robots
and outputs the action vector. The MSA network replaces the
dense layers of the MLP network with an architecture based
on self-attention, but has the same input and output. The GSA
network is similar to the MSA network but has the adjacency
matrix as additional input. The three neural networks constitute
a sequential improvement from a standard neural network
to our port-Hamiltonian formulation. It is important to note
that, with the current formulation, it is not possible to try
a port-Hamiltonian neural network which is not based on
self-attention because each element of the processed input
sequence is employed to compute the port-Hamiltonian terms,
that are also a sequence spanned from i ∈ N i,k

t . This is key for
the scalability of the policy and is a feature that is not provided
by other architectures based on, e.g., multi-layer perceptrons
or convolutions.

Finally, we employ the same architecture used in pH-MARL
to learn the standard deviation for all the options, along with
the same critic and soft actor-critic algorithm (Appendix A).

Table I shows the averaged cumulative reward R̄ = 1
nR =

1
n

∑τmax−1
τ=0 r(sτ ,aτ ) after convergence of the training, where

τmax is the maximum number of steps per episode. For the
three scenarios and the four neural network architectures, we
use n = 4 robots. The table reports the mean of R̄ over
10 evaluation episodes. In all the cases, pH-MARL surpasses
the other three architectures, with a particularly significant
difference in the reverse transport and navigation scenarios.
Given the same number of parameters in the four architectures,
the use of a physics-informed formulation of the neural net-
work leads to a structured learning with efficient sampling in
training. The difference in the reverse transport scenario is due
to the fact that the other networks sometimes fail in reaching
the landmark, despite arriving to a very close position. In the
sampling scenario, pH-MARL is the fastest in inspecting the
environment, therefore covering more informative cells. It is
followed, in decreasing order, by GSA, MSA and MLP, which
is reasonable since the three neural networks are in decreasing
order of architecture complexity in terms of neural network
modules and input information. The navigation scenario is the
simplest among the three. Nevertheless, pH-MARL is still the
best because it better learns the collision avoidance constraint.

To assess the scalability of the different architectures, in

TABLE I
AVERAGED TRAINING CONVERGENCE CUMULATIVE REWARD FOR THE

FOUR ABLATED METHODS. IN ALL THE CASES, n = 4 ROBOTS ARE USED.

Method
Mean and std of R̄ over 10 evaluation episodes

Reverse transport Sampling Navigation

pH-MARL 213± 21 161± 41 −53± 101

MLP 64± 38 73± 25 −280± 98

MSA 57± 43 82± 32 −353± 99

GSA 90± 49 89± 38 −204± 87

Fig. 4 each trained neural network is evaluated with a different
number of robots, showing the mean and standard deviation
of R̄ over 10 episodes. The first conclusion is that pH-MARL
and GSA scale well with the number of robots, achieving the
same cumulative reward per robot for all team sizes. In con-
trast, MSA and MLP do not scale because their architectures
considers directly the global observation and action vectors,
so their modules are not ready to process an input vector of
different dimension. On the other hand, pH-MARL achieves
much better performance than the other networks in all the
scenarios and team sizes, thus confirming the importance of
using physics-informed priors to ease the learning. The single
exception is in the navigation example, where the performance
deteriorates when the number of robots increases.

Fig. 5 provides some qualitative examples for the three
scenarios and helps to understand some limitations of our
approach. Beginning with the navigation scenario, we can see
that the size of the arena does not scale with the number
of robots, it is always 2 × 2m. Hence, taking into account
that the robots have a radius of 15cm, the space is very
small to navigate towards the landmarks without colliding.
According to the reward, the robots search for safe motions,
so they prefer to avoid collisions rather than moving to their
landmarks (Fig. 5, navigation with 8 robots). There are other
features that do not scale in the reverse transport and sampling
scenarios: size of the box, weight of the box, size of the arena
and number of Gaussian modes. Nonetheless, pH-MARL is
capable of generalizing, scaling and circumventing these issues
and achieve the desired tasks. In the reverse transport scenario,
even with 16 robots that are highly packed inside the box, the
robots manage to push the box and avoid erratic movements
caused by the low weight of the box. In the sampling scenario,
robots learn to spread and coordinate to cover more cells when
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Fig. 5. Examples of multi-robot scenarios for different initial conditions and numbers of robots. In the reverse transport scenario, the red box turns green
when it reaches the desired goal (green dot), and the robots are depicted as small blue dots. In the sampling scenario, LiDAR measurements are depicted as
points forming a star pattern centered at the position of the robot, and regions already explored are shown in orange. In the navigation scenario, evolution
over time of the trajectories is colored from pink (t = 0) to blue (t = tf ), whereas the goals are depicted as black dots. It is interesting to see that some
aspects of the environment do not scale with the team size, e.g., the size and weight of the box in the reverse transport scenario, the number of hot spots in
the sampling scenario or the size of the arena in the navigation scenario.

there are more robots. Interestingly, when there are a lot of
robots (n = 9), some robots move to the corners because
they annoy the others by increasing the potential number of
collisions.

Summing up, the combination of a port-Hamiltonian for-
mulation and self-attention mechanisms leads to superior
performance and the desired scalability with the number of
robots, learning control policies that are distributed by design
and fully exploit the graph structure of the multi-robot system.

B. Comparative results
We compare the performance of our proposed physics-

informed multi-agent reinforcement learning approach with
other state-of-the-art multi-agent reinforcement learning ap-
proaches that are not physics-informed. In particular, we com-
pare with: Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) [59], Mean Field Actor Critic (MFAC) [64],
Evolutionary Population Curriculum (EPC) [84], Distributed
multi-Agent Reinforcement Learning with One-hop Neighbors
(DARL1N) [65] and Multi-Agent Proximal Policy Optimiza-
tion (MAPPO) [60]. The comparison results of the first four
methods reported in this paper are extracted from [65].

We use the food collection, grassland and adversarial sce-
narios for the comparison. Following the same procedure in

[65], for the scenarios with an adversarial team (grassland
and adversarial), we first use MADDPG to learn the control
policies of both teams. Then, the adversarial team control
policy is frozen and the policy of the other team is learned
using any of the aforementioned approaches.

Next, we assess the scalability of our proposed approach
in this second series of scenarios. We train the other state-
of-the-art approaches for each specific number of robots,
ranging from 3 to 48 robots. In contrast, we train pH-MARL
n = 4 robots and evaluate the trained control policies with
the other number of robots, without further training. Fig. 6
demonstrates that pH-MARL achieves better or similar results
than the other approaches without further training the control
policies. When the team size is close to the one used during
training (n = 3, 6, 12) pH-MARL surpasses the other methods
in the three scenarios, proving the accuracy of combining a
physics-informed description of the multi-robot team with self-
attention mechanisms. In this sense, MAPPO in the grassland
scenario with n = 6 robots is the only case that obtains
better results than pH-MARL. When the team size is much
greater than the one used during training (24, 48), pH-MARL
outperforms (MADDPG, MFAC) or achieves similar results
(EPC, DARL1N, MAPPO) as the state-of-the-art. Notably,
pH-MARL outperforms all the state-of-the-art methods in the
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(d) Food collection (e) Grassland (f) Adversarial

Fig. 6. Comparison of our proposed physics-informed multi-agent reinforcement learning approach with other state-of-the-art approaches. To measure
performance, we use the averaged cumulative reward R̄ = 1

n
R = 1

n

∑τmax−1
τ=0 r(sτ ,aτ ). pH-MARL is only trained with n = 4 robots and deployed with

different team sizes, while the state-of-the-art control policies are trained for each specific number of robots. For team sizes similar to the one used in training,
our policy outperforms the other approaches. For team sizes much larger than the training team size, our policy still outperforms or achieves similar results
as the state-of-the-art approaches.

adversarial scenario even when n = 48, which is significant
considering that they are all trained with n = 48 robots except
pH-MARL, which is trained with n = 4 robots. Regarding
MAPPO, despite its strong performance in some cases (e.g.,
food collection with n = 3 robots, grassland with n = 6 robots
or grassland with n = 48 robots), it generally exhibits poor
results when the number of robots is larger than 10 robots.
Besides, MAPPO is unable to learn successful policies that
avoid collisions and find the food resources for any of the
teams in the adversarial scenario.

The reason why pH-MARL exhibits a slight drop in per-
formance when n = 24, 48 robots is the same discussed in the
ablation experiments. There are some features of the scenarios,
like the size of the arena, that do not scale with the number of
robots. Robots are not trained to move in configurations that
far from those experienced during training. How to design the
control policy to be invariant to environmental changes is part
of the future work. Qualitative examples can be found in the
repository associated to the paper.

Regarding the computational cost, it is worth noting that,
given the same scenario, optimizer and replay buffer hyper-
parameters, the main differences among methods come from
the parameterization of the actor. In this sense, our approach
involves greater training times per sample and robot com-
pared to other non-physics-informed methods. Specifically, the
increase in computational burden comes from the differen-
tiation of the Hamiltonian ∂Hθ(x)/∂xj at each time step.
However, by restricting the space of admissible policies, we
have better sample efficiency during training compared to non-
physics-informed parameterizations. Therefore, the increase of
computational burden per sample and robot is compensated
by the sample efficiency of the method, leading to similar
overall computational times in robot tasks during training.
Besides, as it has been observed in the scalability results, our
approach needs a very small number of robots to reproduce
or even outperform the other methods when they are trained
with larger numbers of robots, saving additional computation.
Importantly, the computational cost during deployment scales
with the number of neighbors rather than the network size,
therefore preserving the desirable properties coming from

a distributed multi-robot setting. Alternatively, to improve
computational efficiency, one could consider a neural network
estimator that learns to infer ∂Hθ(x)/∂xj from xi

N i,k , which
bypasses automatic differentiation of Hθ(x) and the three
message-passing communication protocol. Avoiding automatic
differentiation to reduce inference time is an active area of
research [85], and we leave its exploration to optimize the
training time of our method for future work.

C. Sensitivity analysis

Regarding the evaluation of the training scalability of our
approach, we have conducted a series of experiments using the
same scenarios of Section VI-A and Section VI-B. Given those
scenarios, we have trained our ph-MARL with an increasing
number of robots, namely, n = {2, 4, 8, 12} (see Fig. 7). The
first interesting conclusion is that the increase in number of
robots does not necessarily lead to better performance because
the interactions among robots always happen at the robot
neighborhood level. In the reverse transport scenario, more
robots inside the cage implies a greater number of robot
contacts with the cage and, therefore, a drop in averaged
cumulative reward. In the sampling scenario, a greater number
of robots leads to an improvement in performance because,
for the same time horizon, robots can explore the arena faster
and localize the informative regions faster. In the case of the
navigation scenario, due to space constraints, an increase in
the number of robots during training leads to a significant drop
in averaged cumulative reward because the space available to
each robot is smaller, so more collisions happen (specially
with n = 12). In all the scenarios, n = 2 is a too small multi-
robot team size to capture the richness of distributed multi-
robot interactions, so the training process is unable to learn a
successful policy in terms of averaged cumulative reward.

Therefore, in general, the optimal number of training robots
depends on constraints of the scenario and the task. Nonethe-
less, as a rule of thumb, increasing the number of training
robots towards a large multi-robot team only leads to greater
sample complexity, whereas decreasing the number of training
robots does not allow to learn sufficiently varied behaviors to
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(a) Reverse transport (b) Sampling (c) Navigation

Fig. 7. Sensitivity analysis of pH-MARL with respect to the number of robots at training. To measure performance, we use the averaged cumulative reward
R̄ = 1

n
R = 1

n

∑τmax−1
τ=0 r(sτ ,aτ ). Compared to the nominal value (n = 4), increasing the number of training robots only leads to greater sample

complexity, whereas decreasing the number of training robots does not allow to learn sufficiently varied behaviors to scale with the number of robots.

TABLE II
PHYSICAL PROPERTIES OF THE JOINTS OF THE MUJOCO HALF CHEETAH.

Joint Type Range [rad] Damping [Ns/m] Stiffness [N/m]

Back thigh hinge [−0.52, 1.05] 6 240

Back shin hinge [−0.785, 0.785] 4.5 180

Back foot hinge [−0.4, 0.785] 3 120

Front thigh hinge [−1, 0.7] 4.5 180

Front shin hinge [−1.2, 0.87] 3 120

Front foot hinge [−0.5, 0.5] 1.5 60

scale with the number of robots. Henceforth, we conclude
that our approach is best suited for training with a small
number of training robots (relative to the task/scenario) but
still sufficiently large to capture all possible neighborhood
interactions.

From a behavioral analysis perspective, the results in Fig. 7
suggest that the learned distributed multi-robot policies benefit
from small neighborhoods, irrespective of the network size. In
scenarios with a fixed arena size, an increase in the number
of robots indirectly leads to an increase in neighborhood
sizes, with a subsequent drop in averaged cumulative reward
both in training and evaluation (see Fig. 6). The appropriate
number of training robots depends on the scenario, e.g.,
in the reverse transport scenario the best performance is
achieved with n = 4 while in the sampling scenario this is
obtained with n = 8. In any case, as concluded above, our
approach requires a sufficiently large team size to capture a
variety of local interactions. On the other hand, different from
other centralized-training decentralized-execution approaches,
our approach considers a single set of policy parameters
that is invariant to the number of robots in the team due
to its distributed structure. Therefore, behavioral analysis to
understand individual influence in the overall team reduces to
understanding how different neighborhood sizes affect overall
performance, which is already given by the sensitivity analysis
with respect to the number of training robots for a fixed
environment size, and the scalability tests shown in Fig. 4
and Fig. 6.

D. Validation on a realistic robot platform

We further validate pH-MARL in a realistic robot setting
using MuJoCo [86]. MuJoCo is a general purpose physics

Fig. 8. Average episode reward obtained by ph-MARL and other MARL
approaches in the 6x1-Half Cheetah environment.

engine that replicates multi-joint dynamics with contact, al-
lowing for fast yet realistic physical behaviors. Specifically,
we use the Multi-agent MuJoCo benchmark [2], where the
task is to learn coordination policies for multi-joint robots
that make them walk. Our approach was evaluated using
the 6x1-Half Cheetah environment (see Fig. 1e). Since our
fundamental contribution is the physics-informed distributed
policy parameterization, we integrated our policy design in
a Trust-Region Policy Optimization (TRPO) reinforcement
learning algorithm [87]. This demonstrates the flexibility of
the physics-informed policy parameterization in the sense
that it can be integrated in different reinforcement learning
algorithms. The benchmark provides results from state-of-the-
art multi-agent reinforcement learning approaches for com-
parison, including Heterogeneous Agent Trust Region Policy
Optimization (HATRPO) and Heterogeneous-Agent Proximal
Policy Optimization (HAPPO) [62], MAPPO, IPPO [66],
and MADDPG. Importantly, in all these state-of-the-art meth-
ods, the policy of each agent/joint depends on the global
observation vector, whereas our policy only depends on the
neighboring information, enforcing a ring topology.

The 6x1-Half Cheetah model is composed of n = 6
joints, corresponding to: {back thigh, back shin, back foot,
front thigh, front shin, front foot}. The input to each joint
is a torque with [Nm] units. The local observation of each
agent is the angle, angular velocity, linear velocity, angular
acceleration and linear acceleration of the joint; and the (x,z)-
position, angular velocity and (x,z)-linear velocity of front
tip. The physical properties of the joints follow those of the
original MuJoCo Half Cheetah [86], detailed in Table II.
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Fig. 9. Quantitative results of the pH-MARL policy for multi-robot navigation in the Robotarium simulator. From left to right, the following metrics are
reported for different numbers of robots and communication quality (baseline means perfect communications): travel distance, travel time and success rate.
All the metrics are the average over 10 random runs.

(a) n = 4 (b) n = 8 (c) n = 12 (d) n = 16

Fig. 10. Qualitative results of the pH-MARL policy for multi-robot navigation in the Robotarium simulator. In (a), communication is perfect, whereas (b),
(c) and (d) operate under imperfect communication. In the imperfect communication cases, magenta links denote delays, red links denote packet loss, yellow
links denote disturbances, and green links denote unperturbed links.

Importantly, physical interactions like friction of the joints
with the armature of the main body are computed numerically
from the stiffness and damping of the joint. Stiffness is
modeled as a spring with equilibrium at the nominal position
of the joint, whereas the damping is modeled as a force linear
in velocity.

As it can be observed in Fig. 8, our method, although less
informed than the others due to the networked constraints,
improves upon IPPO, MADDPG and MAPPO in average
episode reward, and obtains a similar final average episode
reward to HAPPO and HATRPO. Besides, by fully exploiting
the physical dynamics of the robots, our method presents
better sample efficiency than MADDPG, IPPO and MAPPO,
and similar sample efficiency than HAPPO and HATRPO. In
this sense, our method leverages the fact that the acceleration
of the joints is available, so in the open-loop feed-forward
term ẋ is known without explicit knowledge on the values
of J(x), R(x) and ∂H(x)/∂x. This experiment shows that
our approach is a promising method for multi-joint dynamical
robots. The sample efficiency achieved by distributing the
policy according to the imposed ring topology is reduced
when the connectivity of the network increases. The ring
topology restricts the neighborhood of joint i to {i − 1
mod 6, i, i + 1 mod 6}, which implies a very sparse graph.
This serves as a prior for how the other joints affect joint i
that restricts the class of policies that can be learned, leading
to improved sample efficiency. In the extreme case where
the topology is a fully connected graph, our approach would
recover the centralized topology of the benchmarked methods.
The performance in terms of average episode reward would,
therefore, be at least the same, since more information is
provided to the joints; however, the sample efficiency would be
hampered by computing 6 centralized policies, one per joint.

E. Real multi-robot experiments

Finally, we validate the sim-to-real transfer capabilities of
pH-MARL using the Georgia Tech Robotarium [1]. The goal
of this validation is twofold. First, in all previous sections we
assumed perfect communication channels, whereas physical
communication in real settings is subject to packet losses,
disturbances in the messages and delays, leading to potentially
adverse effects on the control policies. Second, we aim to
evaluate how pH-MARL policies trained in an ideal simulated
environment handle the transfer gap to real multi-robot settings
subject to imperfect actuation in the differential-drive robot
dynamics of the Robotarium robots. We pose a navigation
problem with collision avoidance akin to the “Navigation” sce-
nario used for ablations in Section VI-A. The only difference
is that, to better represent the Robotarium arena, we train over
a 3.2×2m space and increase the physical radius of the agents
to 11cm to fit the size of the Robotarium robots. We train a
pH-MARL navigation policy with n = 4 as in Section VI-A
in VMAS.

After that, we integrate the trained policy in the Robotar-
ium simulator, designed to be as similar as possible to the
Robotarium arena to guarantee that policies submitted to the
real Robotarium platform comply with all requirements. Two
settings are evaluated. The first one evaluates the pH-MARL
policy with perfect communications with rcomm = 0.75m.
The second evaluates the pH-MARL policy with realistic
communication, as follows.

• Packet losses: An existing communication link has prob-
ability 0.1 of being removed from the graph.

• Communication disturbances: Messages sent through
a communication channel have probability 0.1 of being
distorted by an additive zero-mean Gaussian noise with
variance 0.05I.
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Fig. 11. Quantitative results of the pH-MARL policy for multi-robot navigation in the Robotarium arena under imperfect communication. From left to right:
travel distance, travel time and success rate. All the metrics are the average over 3 random runs.

• Delays: Messages sent through a communication channel
have probability 0.1 of suffer a delay uniformly dis-
tributed in the range [1, 10] sampling times (sampling
time is 0.033s).

Fig. 9 compares the travel distance, travel time and success
rate for the pH-MARL policy under perfect and imperfect
communication for different number of robots, averaged over
10 random runs each. The pH-MARL policy is able to scale to
teams up to ×4 larger than the one used for training, achieving
constant travel distances and almost constant travel times with
respect to n. The success rates are always above 95%, proving
that the pH-MARL policy consistently transfers to different
robot dynamics (training is done with a damped second-order
integrator, whereas the Robotarium robots follow first-order
differential-drive dynamics) and environment. Importantly, the
pH-MARL policy is robust against imperfect communication,
achieving the same results obtained with perfect communi-
cation. Qualitatively speaking, Fig. 10 shows that the robots
achieve smooth trajectories and they reach their goals avoiding
collisions.

Once we verified that the pH-MARL policy is scalable and
robust against communication disturbances in the Robotarium
simulator, we evaluated it in the real Robotarium arena under
imperfect communication. All the parameters are the same,
and every configuration of number of robots is averaged over
3 random runs. As show in Fig. 11, the travel distance and
travel time are consistent across number of robots, even though
the space in the arena becomes increasingly tight with fleets
of 12 and 16 robots. The case of n = 4 is much easier
than the others, and consequently the travel distance and
time are smaller than in the other configurations. The success
rate is always 100%, allowing us to conclude that our pH-
MARL policy supports zero-shot sim-to-real transfer. This is
reinforced by the qualitative results in Fig. 12, where robots
follow smooth paths and avoid collisions akin to what the pH-
MARL policy achieves in the Robotarium simulator.

VII. CONCLUSIONS

We proposed a novel reinforcement learning formulation
where the single agent is the multi-robot graph. On the one
hand, this allowed to explicitly consider the potential net-
worked interactions among agents, going beyond the classical
assumptions of independent execution found in other multi-
agent reinforcement learning approaches. On the other hand,
this allowed to avoid non-stationarity issues found during
training in other multi-robot learning setting. In particular,

(a) n = 4 (b) n = 8

(c) n = 12 (d) n = 16

Fig. 12. Qualitative results of the pH-MARL policy for multi-robot navigation
in the Robotarium arena under imperfect communication. After training a
navigation policy with n = 4 robots in the VMAS simulator, we directly
deployed it in teams of n = {4, 8, 12, 16} robots. The figures display
coloured trajectories and circles for each robot and associated goal. The
robots achieve safe navigation with collision avoidance even in tight spaces
with teams 4× larger than those seen during training despite the imperfect
communications.

we designed a soft actor-critic algorithm to manage the
networked and stochastic nature of distributed multi-robot
policies, learning simultaneously the homogeneous distributed
control policy for all the robots while respecting the policy k-
hop factorization and the correlation among robots. Besides,
the method exploits the collective knowledge of a centralized
critic during training. To achieve the learning of scalable and
distributed control policies by design, we proposed an inter-
connection and damping passivity-based control policy based
on a port-Hamiltonian description of the multi-robot dynamics
that preserves energy conservation laws and individual robot
dynamics. To parameterized the controller, we proposed a
set of self-attention-based neural networks that respects the
desired distributed structure of the control policy and handles
the time-varying available information at each robot.

We conducted ablation studies and simulations in compari-
son to state-of-the-art multi-agent reinforcement learning ap-
proaches in seven scenarios, covering a wide variety of coop-
erative and competitive behaviors such as collision avoidance,
navigation, transport, evasion and monitoring, and including a
validation experiment in a realistic robotic platform. In all the
cases, our proposed approach exhibits superior performance
in terms of cumulative reward per robot and scalability. Our
approach, without further training, scales and achieves the
same performance of other methods that are trained, ad hoc,
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with a specific number of robots. Extensive validation in a
real multi-robot navigation setting demonstrated that policies
trained in an ideal simulator exhibit great zero-shot sim-to-
real transfer capabilities, even under imperfect communication.
Nevertheless, there is still room for improvement in terms of
generalization with respect to environmental conditions such
as stage size. These results lead to the following conclusion:
the combination of physics-informed neural networks and
reinforcement learning techniques is a promising research line
to address multi-robot problems.

A important future direction is to utilize the physics-
informed port-Hamiltonian parameterization of the control
policies to provide performance or safety guarantees. For
instance, passivity theory or control barrier functions can be
employed to ensure convergence properties of the control
policy or design safety modules on top of the control policy
that provide collision avoidance guarantees. It also remains to
be explored how to bypass the three-message passing scheme
to compute ∂Hθ(x)/∂xj and rely only on single-message
broadcasting protocols or perception cues since it is currently
a computation and implementation bottleneck.

APPENDIX A
NETWORK PARAMETERS

The self-attention-based control policy in ph-MARL is
parameterized as follows:

• [Rθ]ij : W = 3, hw = [nx, 16, 8], rw = [8, 16, 8], dw =
[16, 8, 16]; functions β = sigmoid, χ = ψ = swish [88].

• [Jθ]ij : W = 3, hw = [nx, 16, 8], rw = [8, 16, 8], dw =
[16, 8, 16]; functions β = sigmoid, χ = ψ = swish [88].

• Hi
θ: W = 3 layers, hw = [nx, 16, 8], rw = [16, 8, 8],

dw = [16, 8, 25]; functions β = sigmoid, χ = ψ =
swish [88].

For the variance network we use the same architecture of
[Rθ]ij but with h1 = nx+nu and dW = 2. The other networks
used in the ablation studies are as follows:

• MLP: the policy is a single multi-layer perceptron of size
[n × nx, n × nu, n × nu] with swish hidden activation
function and linear output. For the variance network we
use the same architecture but with size [n(nx +nu), n×
nu, n× nu].

• MSA: the policy is a single multi-layer perceptron of size
[n × nx, n × nx] with linear output followed by a self-
attention layer where query, key and values are directly
the feature vector from the multi-layer perceptron, and an
additional multi-layer perceptron of size [n×nx, n×nu]
with linear output. For the variance network we use the
same architecture but with size [n(nx + nu), n× nu] for
the first multi-layer perceptron.

• GSA: the policy is the same one used to predict [Rθ]ij
but with dW = 2. For the variance network we use the
same architecture but h1 = nx + nu.

The QΠθ
(st,at) function is always parameterized as a multi-

layer perceptron with layers of size [n(nx + nu), 2n(nx +
nu), n(nx + nu), (nx + nu), 1] with swish [88] activation
functions except the last layer, that is linear.

The food collection, grassland, and adversarial scenarios
use a neural network to pre-process the observation vector
to move from a time-varying observation size to a fixed
state size compatible with the control policies. To do so, the
state is a concatenation of the position (2-dimensional vector),
velocity (2-dimensional vector), aliveness (boolean quantity),
closest goal relative distance (2-dimensional vector) and a
2-dimensional feature vector provided by a neural network.
The neural network is composed by a multi-layer perceptron
with no hidden layers of size [nx − 2, 2] and swish activation
function, a self-attention layer of size hw = rw = dw = 2,
and another multi-layer perceptron with no hidden layers of
size [2, 2] and linear output.

APPENDIX B
SOFT ACTOR-CRITIC HYPERPARAMETERS

The following table details the parameterization of the soft
actor-critic algorithm for the different scenarios.

TABLE III: Soft actor-critic hyperparameters.

Parameter Scenario Value

optimizer all Adam [89]

rcomm reverse transport, navigation 0.45m

sampling 0.75m
food collection, grassland, ad-
versarial

0.15m

n training
reverse transport, sampling,
navigation 4

food collection, grassland, ad-
versarial

8

# parallel
environ-
ments

all 96

shared r all True
maximum
steps per
episode

reverse transport, navigation,
food collection, grassland, ad-
versarial

400

sampling 1000

replay
buffer size

all 2× 106

initial ran-
dom steps all 103

γ all 0.99

α0 all 5

αmin all 0.1

αmax all 10

ρ all 0.005

learning
rate α

all 10−5

learning
rate all 10−4

Continued on next page
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TABLE III: Soft actor-critic hyperparameters. (Continued)

batch size all 1024

# training
steps

navigation, reverse transport,
sampling, food collection,
grassland

2× 106

adversarial 6× 105

clip
gradients all False

reward
scaling all False

σmin all e−5

σmax all e2

landmark
mass

sampling, navigation, food col-
lection, grassland, adversarial default

reverse transport 1

evaluation
interval

all 104

#
evaluation
episodes
per
interval

all 10

REFERENCES

[1] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, “The Robotarium: A remotely accessible swarm robotics
research testbed,” in IEEE International Conference on Robotics and
Automation, 2017, pp. 1699–1706.

[2] B. Peng, T. Rashid, C. Schroeder de Witt, P.-A. Kamienny, P. Torr,
W. Böhmer, and S. Whiteson, “FACMAC: Factored multi-agent cen-
tralised policy gradients,” Advances in Neural Information Processing
Systems, vol. 34, pp. 12 208–12 221, 2021.

[3] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized
active information acquisition: Theory and application to multi-robot
SLAM,” in IEEE International Conference on Robotics and Automation,
2015, pp. 4775–4782.

[4] Y. Tian, Y. Chang, F. H. Arias, C. Nieto-Granda, J. P. How, and
L. Carlone, “Kimera-multi: Robust, distributed, dense metric-semantic
SLAM for multi-robot systems,” IEEE Transactions on Robotics, 2022.

[5] X. Kan, T. C. Thayer, S. Carpin, and K. Karydis, “Task planning on
stochastic aisle graphs for precision agriculture,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 3287–3294, 2021.

[6] A. Pierson and M. Schwager, “Bio-inspired non-cooperative multi-
robot herding,” in IEEE International Conference on Robotics and
Automation, 2015, pp. 1843–1849.

[7] E. Sebastián and E. Montijano, “Multi-robot implicit control of herds,”
in IEEE International Conference on Robotics and Automation, 2021,
pp. 1601–1607.

[8] E. Sebastián, E. Montijano, and C. Sagüés, “Adaptive multirobot implicit
control of heterogeneous herds,” IEEE Transactions on Robotics, 2022.

[9] L. Heintzman, A. Hashimoto, N. Abaid, and R. K. Williams, “An-
ticipatory planning and dynamic lost person models for human-robot
search and rescue,” in IEEE International Conference on Robotics and
Automation, 2021, pp. 8252–8258.
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