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Abstract—Particle flow (PFl) is an effective method for over-
coming particle degeneracy, the main limitation of particle
filtering. In PFl, particles are migrated towards regions of high
likelihood based on the solution of a partial differential equation.
Recently proposed stochastic PFl introduces a diffusion term in
the differential equation that describes the trajectory of particles.
This diffusion term reduces the stiffness of the differential
equation and makes it possible to perform PFl with a lower
number of numerical integration steps compared to traditional
deterministic PFl. In this work, we introduce a general approach
to perform importance sampling (IS) based on stochastic PFl.
Our method makes it possible to evaluate a “flow-induced”
proposal probability density function (PDF) after the parameters
of the prior/predicted PDF represented by Gaussian mixture
model (GMM) have been migrated by stochastic PFl. Compared
to conventional stochastic PFl, the resulting processing step is
asymptotically optimal. Within our method, it is possible to
optimize the diffusion matrix that characterizes the diffusion
term of the differential equation to improve the accuracy-
computational complexity tradeoff. Our simulation results in
a highly nonlinear 3-D source localization scenario showcase a
reduced stiffness of the resulting stochastic PFl and an improved
estimating accuracy compared to state-of-the-art deterministic
and stochastic PFl.

I. INTRODUCTION

The particle filter is probably the most widely used method
for nonlinear sequential Bayesian estimation [1], [2]. In a strat-
egy known as IS, particles are first sampled from an arbitrary
proposal PDF and then weighted based on the predicted/prior
PDF and likelihood function. IS is asymptotically optimal,
assuming weak conditions are satisfied [3], [4], but known
to suffer from particle degeneracy in higher dimensional
problems [5]. Here, due to the curse of dimensionality, too
few particles have a significant weight after the update step.

To overcome particle degeneracy, PFl [6], [7] migrates
particles sampled from a predicted/prior PDF to regions of
high likelihood. This transition from the predicted/prior PDF
to the posterior PDF is described by a homotopy function. By
using the homotopy function to constrain the Fokker-Planck
equation and corresponding Langevin stochastic differential
equation (SDE), one can derive a drift vector and a diffusion
matrix that describe the particle trajectories of the resulting
stochastic PFl. By setting the diffusion matrix equal to zero, a
deterministic PFl is obtained. In particular, the exact Daum and
Huang (EDH) flow [8] and the Gromov’s flow [9] are popular
deterministic and stochastic PFls with closed-form solutions.
Stochastic PFls tend to require a lower number of numerical
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integration steps due to improved transient dynamics, i.e., a
reduced stiffness of the underlying Langevin dynamics, and
thus lead to a reduced overall computational complexity. As
proposed and demonstrated recently [10], in stochastic PFl it
is possible to optimize the diffusion term to further reduce
stiffness and thus computational complexity. Although it has
been demonstrated that PFl can overcome particle degeneracy
in a variety of nonlinear and high-dimensional problems [6]–
[9], it has no asymptotic optimality guarantees if directly
applied to the particles [11].

For asymptotically optimal estimation, PFl can be used to
develop a proposal PDF for IS. In particular, the particle
flow particle filter (PFPF) [11] embeds an EDH PFl into IS
by introducing a flow-induced proposal PDF. The evaluation
of this proposal PDF at the migrated particles requires an
invertible mapping from the predicted/prior PDF at particles
before the flow and the PDF represented by the particles after
the flow. Invertible deterministic PFl was recently combined
with a GMM and used within a belief propagation (BP)
framework for the 3-D tracking of an unknown number of
sources in the presence of data association uncertainty [12],
[13]. This approach has recently been used in the context
of marine mammal research [14]. However, this invertible
mapping is limited to deterministic flows like the EDH [15].
For stochastic PFl, in [15] particles are drawn at each flow
step from a different proposal PDF, which leads to a compu-
tationally expensive weights computation for IS. The work
in [16], [17] utilizes auxiliary variables and their filtering
for IS with embedded PFl. In particular, [17] extended this
framework to the stochastic Gromov’s flow. Although the
method in [17] is computationally less expensive than [15], it
has twice computational complexity of PFl due to an additional
auxiliary variable for each particle. Furthermore, it relies on
heuristic and suboptimal diffusion matrix selections without
optimization. Note that IS based on PFl requires explicit
forms and derivatives of the measurement model and the
predicted/prior PDF.

In this work, we introduce an approach that combines IS
with general stochastic flows that include optimizable diffu-
sion terms. The resulting IS framework is combined with a
GMM and used within a BP framework for the detection and
localization of an unknown number of sources in 3-D. The
main contributions of our work are summarized as follows.

• We develop efficient IS where the parameters of a GMM
are migrated by stochastic PFls that rely on a SDE with
an optimizable diffusion term.

• We evaluate our method in a challenging 3-D multi-
source localization problem and demonstrate significant
improvements compared to state-of-the-art methods.
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This paper advances over the preliminary account of our
method provided in the conference publication [18] by (i)
extending the approach to general stochastic flows that include
optimizable diffusion terms and (ii) introducing additional and
more extensive numerical results.

II. STOCHASTIC PFL

Consider a random state to be estimated, x ∈ RN , in a
Bayesian setting. PFl [6], [7] establishes a continuous mapping
w.r.t. pseudo-time λ ∈ [0, 1], to migrate particles sampled from
the prior PDF x0 ∼ f(x) such that they represent the posterior
PDF x1 ∼ f(x|z).

Let f(x) be the prior PDF and h(x) = f(z|x) be the
likelihood function, where z is observed and thus fixed.
Following Bayes’ rule, a log-homotopy function [6], [7] can
be introduced as ϕ(x, λ) = log f(x) + λ log h(x). This log-
homotopy function is used to constrain the Fokker-Plank
equation and the corresponding Langevin SDE of the form

dx = ζ(x, λ)dλ+Q(λ)1/2dw. (1)

Here, ζ(x, λ) ∈ RN is the drift vector, Q(λ) ∈ RN×N is
the diffusion matrix, and w ∈ RN is Brownian motion. The
constrained Fokker-Plank equation can be used to derive the
functional forms of ζ(x, λ) and Q(λ) [9]. (Note that by setting
the diffusion matrix equal to zero, i.e., dx = ζ(x, λ)dλ, a
deterministic flow is obtained.)

Since the drift is both time and state-dependent, directly
integrating λ from 0 to 1 is analytically infeasible. Thus, the
Euler-Maruyama method [19] is commonly used for numerical
integration. Here, particle migration is performed by evaluat-
ing ζ(x, λ) at Nλ discrete values of λ, i.e., 0 = λ0 < λ1 <

... < λNλ
= 1. First, Ns particles

{
x
(i)
0

}Ns

i=1
=

{
x
(i)
λ0
}Ns
i=1

are drawn from f(x). Next, each particle i ∈ {1, . . . , Ns} is
migrated sequentially across the discrete pseudo time steps
l ∈ {1, . . . , Nλ}, i.e.,

x
(i)
λl

= x
(i)
λl−1

+ ζs(x
(i)
λl−1

, λl)∆l +
√

∆lQ(λl)w
(i)
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where w
(i)
l is Gaussian distributed with unit variance and

∆l = λl−λl−1. In this way, particles {x(i)
1 }Ns

i=1={x(i)
λNλ

}Ns
i=1

representing the posterior PDF f(x|z) ∝ exp
(
ϕ(x, λ = 1)

)
are finally obtained.

Recent results demonstrate that, based on an appropriate
choice of the diffusion term Q(λ), stochastic PFl can provide
a strongly reduced number of integration steps and computa-
tional complexity compared deterministic PFl [10]. A popular
stochastic flow is Gromov’s flow [9], given by the drift

ζg(x, λ) = −
(
∇x∇T

x ϕ
)−1∇x log h (3)

and the diffusion matrix

Qg(λ) = −
(
∇x∇T

x ϕ
)−1(∇x∇T

x log h
)(
∇x∇T

x ϕ
)−1

. (4)

Here, we used the short notation ϕ ≜ ϕ(x, λ) and h ≜ h(x).
For a linear measurement model z = Hx + v with zero-

mean additive Gaussian noise v and covariance matrix R,
we have ∇x log h = HTR−1(z − Hx), ∇x∇T

x log h =
−HTR−1H , and ∇x∇T

x ϕ = −P−1 − λHTR−1H .

We can now rewrite drift (3) and diffusion (4) of Gromov’s
flow as

ζg(x, λ) =
(
P−1 + λHTR−1H

)−1
HTR−1(z −Hx)

Qg(λ) = (P−1+λHTR−1H)−1(HTR−1H)

×(P−1+λHTR−1H)−1. (5)

For a nonlinear measurement model z = h(x) + v, one can
use the solution of Gromov’s flow in (5) based on a local
linearization of the measurement function h(·). Gromov’s
flow applied to linearized measurement models has been
demonstrated to outperform deterministic flows [17], [18],
[20]. However, as other deterministic and stochastic PFls, due
to approximations made for numerical integration, Gromov’s
flow is not asymptotically optimal, i.e., the PDF represented
by the particles after the flow is only an approximation of
f(x|z).

An alternative approach for asymptotically optimal estima-
tion is to use PFl methods for IS within a particle filtering
framework. Due to the lack of an invertible mapping in
stochastic PFl, evaluating the PDF after the flow, as required
for proposal evaluation [11], is typically infeasible.

III. IS WITH STOCHASTIC PFL

In this work, we propose to use PFl based on a linearized
measurement model to develop a “flow-induced” GMM as
proposal PDF. For example, let us first transform the drift
of Gromov’s flow to an affine function, i.e, ζg(x, λ) =
Ag(λ)x+ bg(λ), with

Ag(λ) = −
(
P−1 + λHTR−1H

)−1

HTR−1H

bg(λ) =
(
P−1 + λHTR−1H

)−1

HTR−1z .

Next, consider a single Gaussian f(x) = N (x;µ0,P0) with
mean µ0 and covariance matrix P0 as predicted/prior PDF.
Based on the affine form introduced above, we can migrate
the mean and covariance of this Gaussian predicted/prior PDF
based on PFl, i.e.,

µl = µl−1 + ζs(µλl−1
, λl)∆l (6)

Pl = [I+∆lAs(λl)]Pl−1[I+∆lAs(λl)]
T +∆lQ(λl) (7)

for l = 1, . . . , Nλ and by setting ζs(µλl−1
, λl) = ζg(µλl−1

, λl)
and As =Ag. This principle can be extended to GMMs in a
straightforward way. Assuming a prior/predicted PDF repre-
sented by a GMM, i.e., f(x) =

∑Ng

n=1 w
(n)N

(
x;µ

(n)
0 ,P

(n)
0

)
,

one can use (6) and (7) to perform Ng PFls, one for
each GMM component. The resulting GMM q(x) =∑Ng

n=1 w
(n)N

(
x;µ

(n)
1 ,P

(n)
1

)
can be used as a “flow-induced”

proposal PDF for asymptotically optimal IS.
For an accurate numerical implementation of the PFl, the

step sizes, ∆l, need to be adapted to the stiffness of the flow.
A flow with reduced stiffness can be implemented with larger
step sizes, i.e., fewer steps, and thus yields reduced com-
putational complexity. Next, we investigate how to develop
stochastic PFls with reduced stiffness. Recently, it has been
shown that a solution to (1) can be obtained by choosing Q(λ)
arbitrarily and computing ζs(x, λ) according to [10]
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ζs(x, λ) = ζd(x, λ) +
1

2
Q(λ)∇xϕ(x, λ) (8)

where ζd(x, λ) is the drift of a deterministic flow, i.e., dx =
ζ(x, λ)dλ. Based on this result, one can choose a deterministic
PFl and then design a diffusion matrix to get a stochastic PFl
with reduced stiffness.

Consider Gromov’s flow with stochastic drift and diffusion
as in (3) and (4). Based on (8), the corresponding deterministic
drift can be obtained as

ζd-g(x, λ) = ζg(x, λ)−
1

2
Qg(λ)∇xϕ(x, λ). (9)

By using an arbitrary diffusion matrix Q(λ) and by substitut-
ing ζd(x, λ) in (8) by ζd-g(x, λ) in (9), a new stochastic drift
can be developed as

ζs(x, λ) = ζg(x, λ) +
1

2
(Q(λ)−Qg(λ))∇xϕ(x, λ) . (10)

By considering a linearized measurement model, which results
in ∇xϕ(x, λ) = P−1(µ0−x)+λHTR−1(z−Hx), we can
transform (10) to an affine function, i.e.,

As(λ) =− 1

2

(
P−1 + λHTR−1H

)−1

HTR−1H

− 1

2
Q(λ)

(
P−1 + λHTR−1H

)
(11)

bs(λ) =
(
P−1 + λHTR−1H

)−1

HTR−1z

+
1

2
(Q(λ)−Qg(λ))

(
P−1µ0 + λHTR−1z

)
.

Based on (6) and (7), this affine function can again be used to
migrate the means and covariances of a GMM representing a
predicted/prior PDF based on PFl.

The arbitrariness in the choice of the diffusion matrix in
(10) enables us to design a diffusion matrix such that stiffness
is reduced and numerical efficiency is improved. In particular,
the transient dynamics of a PFl is measured by the condition
number κ(·) of the nonsingular matrix As(λ) in (11), i.e.,
the ratio of the largest singular value to the smallest singular
value of nonsingular As(λ). A small condition number close
to one usually implies a reduced stiffness of the SDE [19].
Consider the following function form of Q(λ) in (11), i.e.,
Q = c(P−1+λHTR−1H)−1 where c is a constant. We can
get limc→∞ κ(As) = 1 for limc→∞ ||Q|| = ∞. However, we
cannot make ||Q|| too large, since it defines an upper bound
of the numerical integration error using the Euler-Maruyama
method [10].

To balance the stiffness reduction and the error of numer-
ical evaluation of the SDE, we adopt the objective func-
tion [10] J(Q) = κ(A) + αc where α is a hyperpa-
rameter. The optimal solution Q∗ obtained by minimizing
J(Q) is Q∗ = c∗(P−1 + λHTR−1H)−1, with c∗ =
max

{√
kmax − kmin/

√
α − kmin, 0

}
, where kmax and kmin

are the absolute values of the largest and smallest eigenvalues
of the negative Jacobian matrix of ζd-g(x, λ) in (9), i.e.,
−Ad-g = 1

2 (P
−1+λHTR−1H)−1HTR−1H . For a detailed

proof, see [10]. The resulting flow induced proposal PDF can
be used for IS in a traditional particle filter [1], for Monte
Carlo integration [2], or for the computation of messages in
BP-based estimation framework [21].

IV. NUMERICAL EXPERIMENTS AND RESULTS

We evaluate our flow-induced proposal PDF in a 3-D source
localization scenario where a volumetric array of receivers pro-
vides time-difference of arrival (TDOA) measurements [22].
This scenario is complicated by (i) the highly nonlinear TDOA
measurement model, (ii) measurement-origin uncertainty, and
(iii) an unknown number of sources to be localized [12],
[13]. To address (ii) and (iii), we make use of the BP-
based message passing framework introduced in [23], [24].
To address (i), we use our flow-induced GMM proposal PDF
for weight computation in the belief update step and Monte
Carlo integration in the message computation step. For more
details on how PFl-based proposal PDF can be used within
BP-based message passing framework, see [12], [13], [18].

A. Source Localization Scenario and Implementation Aspects
In this work, we consider the localization of an unknown

number of static sources in a 3-D region of interest (ROI).
There are V receivers. Pairs of receivers provide TDOA
measurements obtained by cross-correlation. In particular,
the TDOA measurement model related to measurement with
index m provided by receivers with indexes a and b, can be
expressed as z

(m)
ab = hab(x

(j)) + v
(m)
ab . Here, hab(x

(j)) =
1/c

(
∥x(j)−p(a)∥−∥x(j)−p(b)∥

)
, p(a) and p(a) are the 3-D

positions of the receivers, c is the propagation speed in the
considered medium, and v

(m)
ab is the additive white noise with

variance σ2
v . The noise v

(m)
ab is statistically independent across

m and across all receiver pairs (a, b). The dependence of a
measurement z

(m)
ab on the source-location x(j) is described

by the likelihood function f(z
(m)
ab |x(j)) that can be directly

obtained from the TDOA measurement model. This likelihood
function has the shape of a hyperboloid (cf. Fig. 1-a). For
unambiguouse source localization, the measurements of mul-
tiple receiver pairs have to be used. Our scenario is further
complicated by (ii) and (iii) discussed above.

Each receiver pair is considered one of S sensors indexed
by s ∈ {1, . . . , S}. The receivers of sensor s are indexed
(sa, sb) and the number of measurements at sensor s is Ms.
We consider a topology with V = 6 receivers and S = 9
sensors is shown in Fig. 1-b. Furthermore, we set σv = 0.5ms

(a) (b)

Fig. 1: (a). Source position and hyperboloids resulting from the
TDOA measurements of two sensors. Each sensor consists of a
receiver pair. A dashed red line indicates the intersection of the
two hyperboloids. (b). Receiver and sensor topology used in our
simulation. There are six receivers located at the center of each face
of the ROI cube. Three sources are randomly placed in the ROI.
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and c = 1500m/s. The clutter measurements at sensor s
follow a uniform PDF on ∥q(sa)−q(sb)∥/c. The mean number
of clutter measurements is µc = 1 and the probability of
source detection, pd, is set to 0.95. The ROI is defined as
[−1000m, 1000m]× [−1000m, 1000m]× [−1000m, 1000m].

Following [13], [23], TDOA measurements are processed
sequentially across sensors. More precisely, let f(x|z1:s−1)
be the multimodal posterior PDF after sensor update s − 1.
This PDF is represented by Ng Gaussian mixture components.
For each component n and each TDOA measurement, z(s)m , of
sensor s, we perform PFl and update each kernel mean and
covariance matrix based on (6) and (7). The resulting Ng×Ms

Gaussian components will be used for IS and Monte Carlo
integration within BP-based message passing [23]. The result
is an approximate posterior PDF f(x|z1:s) represented by Ng

Gaussian mixture components.
As a reference method for the proposed IS with optimized

stochastic PFl (“PFl-OS”), we consider bootstrap IS (“BS”),
which directly uses the posterior PDF f(x|z1:s−1) from
previous sensor s−1 as proposal PDF. We also use methods
with “flow-induced” proposal PDFs using the deterministic
EDH PFl (“PFl-D”) [13]) and the stochastic Gromov’s PFl
(“PFl-S”) [18]). Since every method yields different stiffness,
for numerical integration, every method requires a different
resolution of the pseudo-time. This resolution is defined as the
inverse of the time-interval ∆l. In addition, for every method,
a higher resolution is typically needed at the first few steps of
the numerical integration. We use an exponentially increasing
ratio of the time-interval, i.e., ∆l = β∆l−1, where β is a fixed
ratio for l = 2, . . . , Nλ − 1. Then, we control the interval by
two parameters, the initial difference ∆1 and the increasing
ratio β. Note that a larger ∆1 and β result in fewer discrete
steps Nλ and thus to a reduced runtime. For each method, we
choose ∆1 and β to obtain a good runtime-accuracy tradeoff.

B. Results
Table I shows the mean optimal sub-pattern assignment

(OSPA) error [25] (with a cutoff threshold at 30) and runtime
per run for the different methods and different parametric
settings. OSPA and runtime are averaged over 100 Monte
Carlo runs. We also list the number of Gaussian components,
Ng, as well as the number of samples per component, Np.

ID Method (Ng, Np) (β,∆1) OSPA Runtime(s)

1 BS (−, 2e6) (−,−) 25.89 47.0

2 BS (−, 4e7) (−,−) 14.73 718.8

3 PFl-D (100, 5e3) (1.5, 1e−7) 11.1 202.2

4 PFl-S (100, 5e3) (1.5, 1e−7) 8.36 612.7

5 PFl-OS (100, 5e3) (1.5, 1e−5) 6.33 490.9

6 PFl-OS (100, 5e3) (2, 1e−4) 6.70 295.2

TABLE I: Simulated mean OSPA error and runtime per run for
different methods and system parameters.

BS suffers from particle degeneracy and thus yields the
highest OSPA. In addition, the large number of 4e7 particles
results in the largest memory requirements. In contrast, PFl-
based methods required much fewer particles. It can be seen
that, for the same Nλ value, PFl-S has a smaller OSPA error

compared to PFl-D while its runtime is three times larger. PFl-
OS relies on a diffusion matrix Q optimized as discussed in
Section III, by setting α = 0.1. Notably, PFl-OS yields the
lowest OSPA error and, at the same time, has a low runtime.

To better understand the influence of α on the estima-
tion error for different step sizes, we compare the proposed
methods for different values of α and different resolutions of
pseudo time. Results are shown in Table II. PFl-D and PFl-S
results are also listed. When the step size is small, PFl can
lead to accurate results despite the stiffness of the underlying
differential equation. In this case, traditional methods such as
EDH and Gromov’s flow also perform well. However, the
small step size comes at the cost of a strongly increased
runtime. As the step size increases, only PFl-OS with carefully
chosen parameter α results in a good estimation accuracy.
Notably, our results indicate that PFl-OS has a significantly
improved complexity-accuracy tradeoff compared to PFl-D
and PFl-S. Further numerical analysis is provided in [26],
where the tradeoff between the condition number of the
Jacobian matrix A and the norm of the diffusion matrix Q
is numerically analyzed for different values of α.

Method
(β,∆1)

(1.3, 1e−13) (1.5, 1e−5) (2, 1e−4)

PFl-D 6.29 30 30
PFl-S 8.70 24.51 28.4

PFl-OS (α = 0.01) 4.79 30 30
PFl-OS (α = 0.1) 10.28 6.33 6.70
PFl-OS (α = 0.5) 10.32 9.36 12.85

TABLE II: Mean OSPA error of different PFl-based IS method and
different integration step sizes.

V. CONCLUSION

In this paper, we introduced a general approach to perform
IS based on stochastic PFl. Stochastic PFl introduces a dif-
fusion term in the partial differential equation that describes
the trajectory of particles. A carefully determined diffusion
term reduces the stiffness of this partial differential equation
and makes it possible to perform PFl with a lower number
of numerical integration steps compared to traditional de-
terministic PFl. Our method makes it possible to evaluate
a “flow-induced” proposal PDF after the parameters of a
GMM have been migrated by stochastic PFl. Compared to
conventional stochastic PFl, the resulting updating step is
asymptotically optimal. Within our method, it is possible to
optimize the diffusion matrix that describes the diffusion term
to improve the accuracy-computational complexity tradeoff.
The presented numerical results in a highly nonlinear 3-D
source localization scenario showcased a reduced stiffness and
an improved estimating accuracy compared to state-of-the-
art deterministic and stochastic PFl. Further research includes
flow-induced IS for different types of measurement models
[27], application of flow-induced IS to real-world problems
[28], [29], and efficient information-seeking control methods
based on PFl [30]–[32].
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