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Abstract— Predicting accurate observations efficiently from
novel views is a key requirement for several robotics appli-
cations. Existing shape and surface representations, however,
either require expensive ray-tracing operations, e.g., in the
case of meshes or signed distance functions (SDFs), or offer
only a coarse view, e.g., in the case of quadrics or point
clouds. We develop a new representation that captures viewing
direction and enables fast novel view synthesis. Our first
contribution is a signed directional distance function (SDDF)
that extends the SDF definition by measuring distance in a
desired viewing direction rather than to the nearest point. As a
result, SDDF removes post-processing steps for view synthesis
required by SDF, such as surface extraction via marching cubes
or rendering via sphere tracing, and allows ray-tracing through
a single function call. SDDF also encodes by construction the
property that distance decreases linearly along the viewing
direction. We show that this enables dimensionality reduction
in the function representation and guarantees the prediction
accuracy independent of the distance to the surface. Recent
advances demonstrate impressive performance of deep neural
networks for shape learning, including IGR for SDF, Occupancy
Networks for occupancy, AtlasNet for meshes, and NeRF for
density. Our second contribution, DeepSDDF, is a deep neural
network model for SDDF shape learning. Similar to IGR, we
show that DeepSDDF can model whole object categories and
interpolate or complete shapes from partial views.

I. INTRODUCTION

Various representations for modeling object shapes and
geometric surfaces have been proposed, including meshes,
point clouds, quadrics, occupancy grids, and signed distance
functions. Different representations are well suited for dif-
ferent purposes, such as visualization for meshes, odometry
for point clouds, or collision checking for occupancy grids.
The shape representation challenge in robotics applications,
such as manipulation [1] and active perception [2], that
involve operation in real-time, require fast ray-tracing for
view prediction and occlusion checking. Shape estimation
should be performed online using depth-camera or LiDAR
observations, and shape models should be trained with such
partial-view measurements rather than complete 3D object
models. Distance prediction for collision or occlusion check-
ing should be performed highly efficiently and independently
of the distance or viewing direction to the observed surface
for planning aspects of the problem. However, existing
representations require post processing steps, such as surface
estimation or sphere tracing, to predict observations for novel
views, which may be inefficient.
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To address this challenge, we propose a new 3D shape
representation, called signed directional distance function
(SDDF), and a deep neural network model for learning
SDDF representations, called DeepSDDF. Our SDDF def-
inition extends the popular signed distance function (SDF)
[3] by returning the signed distance to a surface along a
desired viewing direction, rather than to the nearest point.
This makes ray tracing to predict distance with SDDF as
efficient as a single function call, or a single neural network
forward pass in the case of learned SDDF, and obviates the
need for mesh reconstruction [4] or sphere tracing [5].

Additionally, our formulation allows training an SDDF
model directly from depth camera or LiDAR data. In de-
signing a learning architecture for SDDF, we observe that
the measured distance to a surface decreases at constant unit
rate along the viewing direction. Our key contribution is
a neural network model for learning SDDFs that encodes
this gradient property by construction as opposed to IGR
that encourages a similar gradient condition though a loss
function term. We show that this property allows reducing the
dimension of the SDDF model input and makes its training
more sample efficient. The gradient property also provides
analytical confidence about the SDDF distance prediction
accuracy regardless of the distance to the observed surface
and make it a promising shape representation for planning
aspects of the problem. In contrast, deep SDF methods
usually are accurate only close to the surface. As a result of
these qualities, our method provides a rendering framework
that is differentiable by construction, while keeping the most
efficient rendering time. Our DeepSDDF model is inspired
by IGR [3], which trains a decoder-only network across
multiple instances from the same object category and allows
generalization to unseen instances in shape completion and
shape interpolation tasks. We show that DeepSDDF is able to
achieve both instance-level and category-level object shape
reconstruction.

Surface and shape representations can be classified broadly
into explicit and implicit. Explicit models parameterize a
surface directly using point cloud [6], polygonal mesh [7],
or geometric primitive [8] representations. While geometric
primitive and point cloud representations allow convenient
visualization, they do not provide a continuous surface
representation and, hence, are ineffective for occlusion pre-
diction. Polygonal meshes, on the other hand, offer precise
and efficient visualization but learning mesh models from
streaming sensor data is challenging because it requires
determining a proper number of surface patches [9]. Implicit
models like volumetric occupancy [10], density [11]–[14]
and SDF [15] models, parameterize surfaces indirectly as a



level set of a spatial function. In these shape representations,
view synthesis is not possible through a single pass. Sphere
tracing [16] has been employed to enable efficient ray-tracing
for SDF models. It reduces the number of SDF function
evaluations but still requires at least several evaluations, with
the number increasing with the distance from the observed
surface. IGR [3] observes that any valid SDF must satisfy
a unit-norm constraint on its gradient (Eikonal equation),
and introduce an Implicit Geometric Regularization (IGR)
term to encourage a trained SDF model to satisfy this
constraint. In contrast, DeepSDDF satisfies its the gradient by
construction. This makes our DeepSDDF model significantly
more sample efficient than IGR and provides analytical
confidence about the SDDF prediction accuracy independent
of the distance to the surface.

In summary, we make the following contributions.
• We propose a new signed directional distance function

for shape representation. Having direction in SDDF al-
lows ray-tracing as a single function evaluation without
mesh extraction or sphere tracing (very fast ray tracing
independent of distance to the object). It allows training
directly from distance data.

• We propose, DeepSDDF, a neural network model to
learn SDDF shape representation for instance-level and
category-level object surfaces and demonstrate its per-
formance in shape completion and shape interpolation
tasks. DeepSDDF satisfies the gradient property by
construction, which guarantees the accuracy of SDDF
predictions analytically, regardless of the distance to the
object surface.

II. PROBLEM STATEMENT

We focus on learning a common shape representation
for multiple instances from the same object category, e.g.,
cars, using distance measurement data, e.g., from a depth
camera or a LiDAR scanner. A distance measurement is
modeled as a collection of rays, e.g, corresponding to depth
camera pixels or LiDAR beams, along which the distance
from the sensor position, e.g., depth camera optical center
or LiDAR sensor frame origin, is measured to the observed
surface. Let ηi be a n-dimensional vector on the unit sphere
Sn−1 := {η ∈ Rn | ∥η∥2 = 1} specifying the direction of
the i-th sensor ray. Denote the distance measurement from
sensor position pi ∈ Rn along direction ηi by di ∈ R ∪
{∞}. In practice, the dimension n is 2 or 3 and distance
measurements of rays that do not hit a surface are set to ∞.

Problem 1. Let Dl :=
{
(pi,l,ηi,l, di,l)

}
i

be distance mea-
surements obtained from different instances l of the same
object category. Learn a latent shape encoding zl ∈ Rm for
each instance l and a function h(p,η, z) that can predict
the distance from any point p along any direction η to the
surface of an instance with shape z from the same category.

III. SDDF

In this section, we propose a signed directional distance
function for implicit shape representation. Sec. III-A defines

Fig. 1. SDDF of a sofa along three directions indicated by arrows, on
the same plane cutting the sofa. The color at each point shows the SDDF
value at that point with fixed direction from small (purple) to large (yellow).
When the view rays do not intersect the object the distance is infinite (yellow
regions).

SDDF and formulates the condition that the distance to
a surface decreases linearly along the viewing direction.
Sec. III-B and Sec. III-C study the properties of functions
that satisfy the SDDF condition.

A. Signed Directional Distance Function

We define a function h(p,η) to model the distance mea-
sured by a distance sensor from position p to the surface of
a set along viewing direction η. Both p and η are in the
same coordinate frame.

Definition 1. A signed directional distance function (SDDF)
h : Rn × Sn−1 7→ R of set O ⊂ Rn measures the signed
distance from a point p ∈ Rn to the set boundary ∂O in
direction η ∈ Sn−1:

h(p,η) := min
{
d ∈ R

∣∣ p+ dη ∈ ∂O
}
. (1)

This definition is inspired by the implicit SDF representa-
tion of a set [3], [17]. SDF measures the distance from p to
the surface ∂O along the direction that minimizes the dis-
tance, while SDDF measures the distance to ∂O in a specific
direction η. Also, unlike an SDF, which is negative inside
the surface that it models, an SDDF is negative behind the
observer’s point of view. The motivation for defining SDDF
is that it directly models the measurement generation process
of a distance sensor allowing fast observation prediction
without the need for surface reconstruction. This is relevant
in robotics problems where efficient prediction of visible
space is needed, such as active mapping and exploration.
A key property is that, if the SDDF of a set is known, we
can generate arbitrary distance views to the set boundary. In
other words, we can image what a distance sensor would
see from any point p in any viewing direction η. The SDDF
definition is illustrated in Fig. 1.

Our definition makes the distance continuous along a
viewing direction with positive values before the first surface
and negative values afterwards. The distance to the surface
∂O decreases linearly as the observer approaches ∂O along
the viewing direction η. To formulate this property mathe-
matically, consider an observer located at position p1. Let the
SDDF to the surface ∂O in direction η be h(p1,η). Suppose



that the observer moves δ units along the viewing direction η
towards ∂O. Now, the observer is at position p2 = p1 + δη
and the SDDF h(p2,η) in direction η is decreased by δ
units, i.e., δ = h(p1,η) − h(p2,η). This property is stated
below, where ∇ph(p,η)

⊤η = limδ→0
h(p+δη,η)−h(p,η)

δ is
the gradient of h with respect to p projected along the
direction η.

Lemma 1. The gradient of an SDDF h(p,η) with respect to
the position p projected to the viewing direction η satisfies:

∇ph(p,η)
⊤η = −1. (2)

B. SDDF Structure

Next, we study the class of functions that satisfy the SDDF
gradient property in Lemma 1. We show that, while the
domain Rn × Sn−1 of an SDDF has 2n − 1 degrees of
freedom, the constraint in (2) removes one additional degree
of freedom. To see this, we first simplify the condition in (2)
by defining a function g(p,η) := h(p,η) + p⊤η. Since the
viewing direction η is a unit vector, we have η⊤η = 1 and
(2) is equivalent to the requirement that:

∇pg(p,η)
⊤η = 0. (3)

The zero-gradient condition in (3) suggests that g(p,η) is
constant along some direction and, hence, has only 2n − 2
degrees of freedom. To show this rigorously, we rotate the
coordinate system so that the viewing direction η lies along
the last coordinate axis. For example, in n = 3 dimensions
we can align η with the z-axis, showing that the third element
of the gradient of g(p,η) should be zero or equivalently that
g(p,η) is constant along the third dimension in the rotated
reference frame.

The rotation matrix R ∈ SO(n) that rotates a unit vector
x ∈ Sn−1 to another unit vector y ∈ Sn−1 with y ̸= −x
along the sphere geodesic [18] (shortest path) is:

R = I+ yx⊤ − xy⊤ +
1

1 + x⊤y
(yx⊤ − xy⊤)2. (4)

Using (4), we can obtain an explicit expression for the
rotation Rη that aligns a viewing direction η with the unit
vector en = [0, . . . , 0, 1]⊤. Lemma 2 and 3 provide the
rotation matrices for the 2D and 3D cases.

Lemma 2. A vector η = [a, b]⊤ ∈ S1 can be rotated to

e2 ∈ S1 via the rotation matrix Rη =

[
b −a
a b

]
∈ SO(2).

Lemma 3. A vector η = [a, b, c]⊤ ∈ S2 can be rotated to
e3 ∈ S2 via the rotation matrix Rη ∈ SO(3) below:

Rη =



1 0 0

0 1 0

0 0 −1

 if η = −e3,

1−
a2

1+c − ab
1+c −a

− ab
1+c 1− b2

1+c −b

a b c

 otherwise.

(5)

To reveal the structure implied by the condition in (3), we
express it in a rotated coordinate frame where en = Rηη
and q = Rηp. By the chain rule:

0 =
∂g

∂p
η =

∂g

∂q

∂q

∂p
η =

∂g

∂q
Rηη =

∂g

∂q
en =

∂g

∂qn
. (6)

The functions that satisfy (6) do not depend on the last
element of q. In other words, any function g(p,η) that
satisfies (6) can be expressed as g(p,η) = f(PRηp,η)
for some function f : Rn−1 × Sn−1 7→ R and a projection
matrix P := [I 0] ∈ R(n−1)×n, which drops the last element
of q = Rηp. We summarize this property of SDDF below.

Proposition 1. A function h : Rn × Sn−1 7→ R is a valid
SDDF, i.e., satisfies Def. 1 and the gradient condition (2) in
Lemma 1, if and only if:

h(p,η) = f(PRηp,η)− p⊤η (7)

for some function f : Rn−1 × Sn−1 7→ R and Rη defined
in (4) with x = η and y = en.

Proposition 1 shows that space of SDDF functions is
a subset of real-valued functions with 2n − 2 degrees of
freedom. For example, any SDDF in 2D with position p =
[x, y]⊤ and direction η = [a, b]⊤ such that a2 + b2 = 1 can
be expressed as h(x, y, a, b) = f(bx− ay, a, b)− (ax+ by).
The gradient condition in (2) is satisfied by construction:
∇ph(p,η)

⊤η = (f ′[b,−a] − [a, b]) · [a, b] = (f ′b − a)a −
(f ′a + b)b = −a2 − b2 = −1, where f ′ denotes the
derivative of f with respect to its first argument evaluated at
(bx− ay, a, b).

C. Infinite SDDF Values

Proposition 1 allows learning SDDF shape representations
from distance measurements without the need to enforce
structure constraints explicitly. A remaining challenge is that
the measured distance at some sensor position p along a
ray η that does not hit the object surface is infinite. Since
regression models cannot predict infinite values directly,
we use an invertible function ϕ to squash the distance
measurements to a finite range.

Lemma 4. Let ϕ : R 7→ R be a function with non-zero
derivative, ϕ′(x) ̸= 0, for all x ∈ R. Then, for any function
g : Rn × Sn−1 7→ R and vector η ∈ Sn−1, we have:

∇pg(p,η)
⊤η = 0 if and only if ∇pϕ(g(p,η))

⊤η = 0.

Proof. The claim is concluded by the chain rule, 0 =
∇pϕ(g(p,η))

⊤η = ϕ′(g(p,η))∇pg(p,η)
⊤η, and since

ϕ′(g(p,η)) is never zero by assumption.

The squashing function ϕ in Lemma 4 is either strictly
increasing or strictly decreasing by the mean value theorem
since ϕ′. In both cases, it has an inverse ϕ−1. We assume ϕ
is strictly increasing and define q(p,η) := ϕ(f(PRηp,η))
such that as in Proposition 1:

h(p,η) = ϕ−1(q(p,η))− p⊤η. (8)



PRηp

Inner Product
p⊤η

A
uto

D
ecoder

min
(
.,ϕ(∞)

)
ϕ−1(.) +

e = |m− ϕ(d+ p⊤η)|

η

p

−

h

m

dp,η

Fig. 2. Neural network model for SDDF regression. Given a position p,
viewing direction η and measured distance d, the model rotates p to new
coordinates Rηp, whose last component does not effect the SDDF value
and is removed via a projection matrix P. The projected input is processed
by an autodecoder to predict a squashed distance value m, which may be
converted to an SDDF value h or compared to a modified distance d+p⊤η
in the error function. Minus sign next to the plus block means that −p⊤η
will be added.

The formulation in (8) allows training a neural network
model of q(p,η) with possibly infinite distance data. Due
to Lemma 4, (8) is guaranteed to satisfy the SDDF property
∇ph(p,η)

⊤η = −1 by construction.

IV. DEEP SDDF MODEL

This section develops a neural network model and a cost
function for learning instance-level and category-level SDDF
shape models.

A. DeepSDDF Neural Network

Based on the formulation in (8), we design DeepSDDF, a
neural network model for SDDF learning, shown in Fig. 2.
The network takes position-view pairs (p,η) as input and
corresponding distance measurements d as supervision. The
model computes PRηp analytically and then uses a fully
connected autodecoder with parameters θ to map PRηp and
η to y = qθ(p,η) = ϕ(f(PRηp,η)). We ensure that the
autodecoder output does not exceed the maximum squashed
distance, m = min{y, ϕ(∞)}, and compare its value with
the distance measurement, ϕ(d + p⊤η), transformed ac-
cording to (8). This neural network design guarantees that
the SDDF gradient property in Lemma 2 is satisfied by
construction.

B. Instance-Level DeepSDDF Training

Given distance measurements Dl from a single object
instance l, as in Problem 1, we can learn an SDDF shape
representation h(p,η) by optimizing the autodecoder param-
eters of the DeepSDDF model in Fig. 2. We split the training
data Dl into sets of finite and infinite distance:

Fl := {(p,η, d) ∈ Dl | d < ∞} ,
Il := {(p,η, d) ∈ Dl | d = ∞} ,

(9)

and define an error function for training the parameters θ:

e(θ;F , I) := α

|F|
∑

(p,η,d)∈F

|ϕ(d+ p⊤η)− qθ(p,η)|p

+
β

|I|
∑

(p,η,d)∈I

r (ϕ(∞)− qθ(p,η))
p
+ γ∥θ∥pp, (10)

where α, β, γ > 0 are weights, p ≥ 1, and r(x) is a rectifier,
such as ReLU r(x) = max {0, x}, GELU r(x) = xΦ(x),
or softplus r(x) = log(1 + exp(x)). In the experiments,
we use p = 1 and r(x) = max {0, x}. The last term in
(10) is used to regularize the network parameters θ but in
our experiments we set γ to zero. The first term encourages
the model qθ(p,η) to predict the squashed distance values
accurately. We introduced a rectifier r(x) in the second term
in (10) to allow the output of qθ(p,η) to exceed ϕ(∞),
which we observed empirically leads to faster convergence.
The SDDF value predicted by the model is hθ(p,η) =
ϕ−1(min {qθ(p,η), ϕ(∞)})− p⊤η.

C. Category-Level DeepSDDF Training

Next, we consider learning an SDDF shape model for a
complete object category with L instances. Inspired by deep
SDF methods [3], we introduce a latent code zl ∈ Rm to
model the shape of each instance l and learn it as part of the
parameters of the neural network model qθ(p,η, zl). Given
finite Fl and infinite Il distance measurements, we optimize
zl independently, for each instance l, and θ jointly, across
all instances using a similar error as in (10):

min
θ,{zl}l

α∑
l |Fl|

∑
l

∑
(p,η,d)∈Fl

|ϕ(d+ p⊤η)− qθ(p,η, zl)|p

+
1∑
l |Il|

∑
l

∑
(p,η,d)∈Il

βr(ϕ(∞)− qθ(p,η, zl))
p

+ γ∥θ∥pp + σ
1

L

∑
l

∥zl∥pp, (11)

where the last term regularizes the instance latent codes.
After training, a category-level SDDF shape model allows

predicting the shape of a previously unseen instance at test
time from a partial observation. Assume that the category-
level neural network parameters θ are already trained and
we have an average category-level shape encoding z̄ ∈ Rm,
e.g., obtained by using a fixed z for all instances l during
training or simply as the mean of {zl}l. We initialize the
code of a newly observed instance with z̄ and optimize it
using distance measurements F and I and the same error
function as before:

min
z

α

|F|
∑

(p,η,d)∈F

|ϕ(d+ p⊤η)− qθ(p,η, z)|p

+
β

|I|
∑

(p,η,d)∈I

r(ϕ(∞)− qθ(p,η, z))
p + σ∥z∥pp.

(12)

The optimized latent code z∗ captures shape information
about the instance and can be used to synthesize distances
to its surface from any point p in any viewing direction η
by a single forward pass through the SDDF model.



V. EVALUATION
We evaluate our DeepSDDF model for shape learning in

instance-level, category-level, and scene-level reconstruction.
Sec. V-A presents single-instance shape modeling using real
point cloud data from the YCB dataset [19]. Sec. V-B applies
DeepSDDF to category-level shape modeling, demonstrating
shape completion for a novel instance based on a single dis-
tance view and shape interpolation among different instances
using categories from ShapeNet [20]. The shape completion
accuracy of DeepSDDF is compared against the IGR model
[3] for SDF estimation, which improves over DeepSDF [17]
due to the Eikonal regularization but otherwise uses the same
neural network. Both our model (by construction) and IGR
(via loss function) capture structural constraints for SDDF
and SDF, respectively, making a quantitative comparison
interesting. Sec. V-C demonstrates scene-level reconstruction
using real depth images from the SceneNN dataset [21].
Due to space limitation, we provide additional details and
experiments, including ablation study, in [22], [23].

Metrics: We use shape reconstruction metrics intro-
duced by Occupancy Networks [24] based on point-cloud
comparison, including Chamfer distance, Completeness, and
Accuracy. For all metrics lower is better and all metrics are
zero for two identical point clouds. The reported times in the
tables are the average ray-tracing time for single ray.

Visualization: We emphasize that our DeepSDDF
model can synthesize point clouds with arbitrary resolution
from arbitrary views as efficiently as a single neural-network
forward pass. The generated point clouds can be converted
to a different representation, such as occupancy grid, depth
images, or mesh if desired.

A. Instance-Level Shape Modeling (Real Data)
First, we show that DeepSDDF can reconstruct instance-

level shape using real data from the YCB dataset [19].
Network Architecture: We use an autodecoder with 8

layers, 512 hidden units per layer, and a skip connection
from the input to layer 4.

Training Details: Depth images, segmentation masks,
and camera poses for 20 object instances from YCB [19]
were used for training. The masks are used to separate the
(finite) rays that hit an object from the background (provided
as infinite rays to our model). For each object in YCB,
there are 600 views from which images are taken. The data
was split randomly into a 95% training set and 5% test set.
Models were trained with learning rate 0.005 that decreases
every 1k epoch by factor of 0.5 for 10k epochs.

Results: Qualitative results are presented in Fig. 4. The
average of quantitative results over 20 objects are provided
in Table I. This experiment shows that DeepSDDF is able to
train directly from real data (95% of data) and predicts the
distance at novel views (5% of data) from which an object
has never been observed from.

B. Category-Level Shape Modeling
In this section, we explore the capability of our method

to represent a whole category of object shapes and compare
its performance versus the deep SDF model IGR [3].

TABLE I
AVERAGE RECONSTRUCTION METRICS OF AN 8-LAYER DEEPSDDF
MODEL TRAINED WITH REAL DATA FROM YCB [19] ON 20 OBJECTS

Chamfer-L2 Chamfer-L1 Completeness Accuracy Time (sec.)
1.121e-05 1.294e-03 6.854e-04 1.903e-03 5.829e-07

Network Architecture: We use an autodecoder with 16
layers, 512 hidden units per layer, and a skip connection
from the input to layers 4, 8, 12 to represent the SDDF model
qθ(p,η, z) introduced in Sec. IV with dimension of the latent
shape code z set to 256.

Training Details: DeepSDDF and IGR were trained
over 5 categories from ShapeNet [20]. Distance images
with resolution 512 × 512 were generated as training data
from 8 camera views facing the object from azimuth kπ

4

and elevation (−1)kπ
4 for k = 0, . . . , 7 on a sphere. Each

distance image was subsampled to contain at most 100k
finite and 100k infinite distance measurement rays. IGR was
trained using the point-cloud obtained from all points with
finite distance measurements and augmented with normals
obtained using the method of [25]. Normals were not used
to train DeepSDDF. DeepSDDF and IGR were trained for
1000 epochs, with 2000 random samples, and with learning
rate 0.0005, 0.0001 for the network weights and latent code
weights, respectively. The learning rate decreases by factor
of 2 every 500 epochs for IGR (as suggested in [3]) and
every 200 epochs for DeepSDDF.

Shape Completion: The shape reconstruction accuracy
and timing of the DeepSDDF and IGR models are presented
in Table II. Two versions of IGR are evaluated: IGR-
Mesh, reconstructing a mesh using marching cubes [4] and
sampling a uniform point cloud on its surface, and IGR-
Sphere, performing sphere tracing via IDR [16] to generate
a point cloud. The results show that our model is an order of
magnitude more accurate than IGR with limited training data,
despite training IGR with normals and encoding additional
directional information in SDDF. This can be explained by
the fact that IGR encourages the satisfaction of the SDF
gradient property [3] through regularization, while DeepS-
DDF encodes the SDDF gradient property (Lemma 1) by
construction, making DeepSDDF more data efficient. Com-
paring the results of IGR-Mesh and IGR-Sphere shows that
the accuracy of deep SDF estimation may deteriorate with
distance from the surface. We used an open-source sphere-
tracing algorithm from IDR [16] with default parameters,
except for sphere tracing iters = 50, which led to faster
and accurate results in our experiments. The results also show
that DeepSDDF is an order of magnitude faster than IGR for
ray tracing because DeepSDDF requires a single forward
pass, while IGR performs iterative sphere tracing.

Shape Interpolation: We also demonstrate that DeepS-
DDF is able to model the latent shape space of an object
category continuously and meaningfully. Fig. 3 shows inter-
polation between the latent shape codes of two instances
from the same category. The intermediate shapes do not
exist in the training set and are imagined by the DeepSDDF
decoder based on the interpolated latent code z.



Fig. 3. SDDF shape completion (first row) using a distance measurement from an unseen airplane instance (first column). The trained DeepSDDF model
can synthesize novel distance views (middle four columns) or point clouds from arbitrary camera views which are multi-view consistent (last column). The
second row shows an example of shape interpolation between two boat instance in the first and last column. The middle shapes are generated with latent
code obtained as the average between the two far-end instance codes. From left to right, the latent code weights with respect to the left-most instance are
1, 0.75, 0.5, 0.25, 0, respectively.

TABLE II
COMPARISON BETWEEN DEEPSDDF AND IGR [3] ON 5 SHAPENET

CATEGORIES [20] WITH MESHES NORMALIZED TO UNIT-LENGTH

BOUNDING BOX

Category Method Chamfer-L2 Chamfer-L1 Completeness Accuracy Time (sec.)

Car

DeepSDDF 1.971e-04 7.982e-03 7.609e-03 8.355e-03 1.190e-06
IGR-Mesh 3.599e-03 3.869e-02 1.646e-02 6.092e-02 –

IGR-Sphere 9.091e-03 6.937e-02 3.279e-02 1.059e-01 1.772e-05

Airplane

DeepSDDF 2.332e-04 7.707e-03 6.407e-03 9.008e-03 1.175e-06
IGR-Mesh 1.774e-02 8.798e-02 2.076e-02 1.551e-01 –

IGR-Sphere 2.840e-02 1.172e-01 2.880e-02 2.057e-01 2.317e-05

Watercraft

DeepSDDF 5.209e-04 1.288e-02 1.147e-02 1.428e-02 1.192e-06
IGR-Mesh 7.075e-03 5.480e-02 2.751e-02 8.210e-02 –

IGR-Sphere 3.326e-02 1.231e-01 3.855e-02 2.077e-01 2.010e-05

Sofa

DeepSDDF 3.850e-04 1.221e-02 1.093e-02 1.348e-02 1.195e-06
IGR-Mesh 1.151e-02 6.923e-02 4.083e-02 9.764e-02 –

IGR-Sphere 5.414e-02 1.563e-01 5.594e-02 2.567e-01 2.239e-05

Display

DeepSDDF 9.200e-04 1.789e-02 1.551e-02 2.027e-02 1.184e-06
IGR-Mesh 8.883e-03 5.063e-02 3.493e-02 6.633e-02 –

IGR-Sphere 2.139e-02 9.600e-02 4.030e-02 1.516e-01 1.951e-05

Avg.

DeepSDDF 4.512e-04 1.173e-02 1.038e-02 1.307e-02 1.187e-06
IGR-Mesh 9.761e-03 6.026e-02 2.809e-02 9.241e-02 –

IGR-Sphere 2.925e-02 1.123e-01 3.927e-02 1.855e-01 2.057e-05

C. Scene-Level Reconstruction and Robotics Applications

Finally, we apply DeepSDDF to learn part of a scene
using real depth images from the SceneNN dataset [21].
This experiment shows that a single DeepSDDF network
is capable of modeling multiple objects. Once the SDDF
model is trained, it can be used to perform visibility and
visible volume queries very efficiently (as a single forward
network pass). Fast assessment of the visible volume of
an environment from novel views is a key component in
the next-best-view problem [26] and other active perception
problems [2] in robotics.

Network Architecture: We use an autodecoder with 16
layers, 512 hidden units per layer, and a skip connection
from the input to layers 4, 8, 12 to represent the SDDF model
qθ(p,η) introduced in Sec. IV.

Training Details: We used 38 depth images chosen
every 50 steps starting from image 0 of sequence 255 from
the SceneNN dataset [21]. For each image, we randomly
chose 20k colliding rays and 20k non-colliding rays, effec-
tively subsampling the depth image resolution. The network
was trained with learning rate 0.005 that decreases every 1k
epoch by factor of 0.5 for 10k epochs.

Scene Reconstruction and Visibility Queries: A recon-
struction of the 3D scene in SceneNN sequence 255 are

Fig. 4. Left: Scene-level SDDF reconstruction using 38 real depth images
from the SceneNN dataset [21]. A point cloud surface reconstruction from
8 test views, two of which are shown as a purple camera frame (left) and
yellow camera frame (close to the surface). The ground plane shows the
SDDF value at each point in the viewing direction indicated by the black
arrow with yellow color indicating infinite values (truncated by some max
value) and red-to-blue transition indicating large to small signed distance.
The red point on the surface is a sample point which is visible from the
yellow camera but not from the purple camera. The DeepSDDF model
can handle such visibility queries very efficiently, as a single forward pass
through the neural network. Right: Two samples of novel-view point clouds
synthesized by a DeepSDDF model trained using real data from YCB [19].

shown in Fig. 4. Additionally, the SDDF function in a
horizontal plane cutting the scene is shown. To illustrate the
utility of an SDDF model in active perception applications,
we consider two arbitrary poses (shown in Fig. 4) and evalu-
ate the visible volume from their views. We approximate the
visible volume by considering the volume corresponding to
each pixel as a pyramid. For example for the yellow camera
in Fig. 4 with resolution 480 × 640 the visible volume is
0.307 (more accurate due to higher resolution), computed
by the DeepSDDF model. With resolution 240 × 320, the
computed visible volume is 0.305.

Similarly, the visibility of a query point q of interest
from a camera with position p may be evaluated as single
DeepSDDF pass i.e., checking ∥p − q∥ > h(p, q−p

∥q−p∥ ),
where h is SDDF.



D. Limitations

Assume we have a depth ray in the training set that has the
direction η and end ray point p. Consider an arbitrary ray
that collides with the surface at point p. For input samples,
with their point element on this ray and their direction
element to be the ray direction, Lemma 1, theoretically
guarantees that we need one sample of these input samples.
We do not need to, for example, segment this ray and collect
more training samples. Since the Lemma 1 theoretically
guarantees the correctness for all if one of them returns
correct distance. However, this lemma does not theoretically
guarantee the correctness of distances when we observe
the point p from different directions. As a result for other
rays, that collides with the surface at point p, with different
viewing direction other than η, we need one more sample per
ray. We have already observed p from direction η in training
data, but we should add more input samples with different
viewing directions such that the corresponding ray collides
with the surface at point p. To address this limitation, we
developed a data augmentation technique in [22], [23] that
adds more viewing directions for point p (in the training
data), to training data.

VI. CONCLUSION

This work proposed a signed directional distance function
as an implicit shape representation. Any valid SDDF was
shown to satisfy a gradient condition, which should be
respected by neural network models for SDDF learning. We
designed DeepSDDF, a neural network model for SDDF
estimation that that guarantees the gradient condition by con-
struction. Our model enables direct supervision from depth
camera or LiDAR sensors and efficient ray-tracing as a single
network forward pass. DeepSDDF showed superior shape
reconstruction accuracy and rendering time in instance-level
and category-level shape learning experiments compared to
deep SDF models. SDDF is a promising representation for
robotics applications requiring accurate continuous shape and
surface modeling with highly efficient visibility prediction.
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